

OntoUML specification

Welcome to the documentation of OntoUML ontology-driven conceptual modelling language based on upper ontology UFO. We welcome any form of contribution and questions that will make this documentation better as it is community-driven hosted on github.com [https://github.com/OntoUML/OntoUML]. For more information about OntoUML, tooling, references, and the community, visit OntoUML Community Portal [https://ontouml.org].

Contents

	Introduction
	OntoUML

	UFO

	Theory
	Types and Individuals

	Identity

	Rigidity

	Class stereotypes
	Kind

	Subkind

	Phase

	Role

	Collective

	Quantity

	Relator

	Category

	PhaseMixin

	RoleMixin

	Mixin

	Mode

	Quality

	Relationship stereotypes
	Introduction

	Formal

	Material

	Mediation

	Characterization

	Derivation

	Structuration

	Part-Whole

	ComponentOf

	Containment

	MemberOf

	SubCollectionOf

	SubQuantityOf

	OntoUML Anti-Patern Catalogue
	BinOver anti-pattern

	DecInt anti-pattern

	DepPhase anti-pattern

	FreeRole anti-pattern

	GSRig anti-pattern

	HetColl anti-pattern

	HomoFunc anti-pattern

	ImpAbs anti-pattern

	MixIden anti-pattern

	MixRig anti-pattern

	MultDep anti-pattern

	PartOver anti-pattern

	RelComp anti-pattern

	RelOver anti-pattern

	RelRig anti-pattern

	RelSpec anti-pattern

	RepRel anti-pattern

	UndefFormal anti-pattern

	UndefPhase anti-pattern

	WholeOver anti-pattern

	OntoUML Pattern Catalogue
	Phase Partition pattern

	Relator pattern

	RoleMixin pattern

	RoleMixin Alternative pattern

Meta

	Contributing
	Reporting issues

	Solving issues

	Documentation guidelines

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Content:

	OntoUML

	UFO

OntoUML

OntoUML is an ontologically well-founded language for Ontology-driven Conceptual Modeling. OntoUML is built as a UML extension based on the Unified Foundational Ontology (UFO). The foundations of UFO and OntoUML can be traced back to Giancarlo Guizzardi’s Ph.D. thesis “Ontological Foundations for Structural Conceptual Models [https://www.researchgate.net/publication/215697579_Ontological_Foundations_for_Structural_Conceptual_Models]”. In his work, he proposed a novel foundational ontology for conceptual modeling (UFO) and employed it to evaluate and re-design a fragment of the UML [http://www.uml.org] 2.0 metamodel for the purposes of conceptual modeling and domain ontology engineering. OntoUML has been adopted by many academic, corporate and governmental institutions worldwide for the development of conceptual models in a variety of domains. It has also been considered as a candidate for addressing the OMG SIMF (Semantic Information Model Federation) Request for Proposal, as is explicitly recognized as the foundations for the “Data Modeling Guide (DMG) For An Enterprise Logical Data Model (ELDM)” initiative. Finally, some of the foundational theories underlying OntoUML have also influenced other popular conceptual modeling languages such as ORM 2.0.

Source: wikipedia.org [https://en.wikipedia.org/wiki/OntoUML]

UFO

The Unified Foundational Ontology (UFO), developed by Giancarlo Guizzardi and associates, incorporating developments from GFO, DOLCE and the Ontology of Universals underlying OntoClean in a single coherent foundational ontology. The core categories of UFO (UFO-A) have been completely formally characterized in Giancarlo Guizzardi’s Ph.D. thesis and further extended at the Ontology and Conceptual Modelling Research Group (NEMO) in Brazil with cooperators from Brandenburg University of Technology (Gerd Wagner) and Laboratory for Applied Ontology (LOA). UFO-A has been employed to analyze structural conceptual modeling constructs such as object types and taxonomic relations, associations and relations between associations, roles, properties, datatypes and weak entities, and parthood relations among objects. More recent developments incorporate an ontology of events in UFO (UFO-B), as well as an ontology of social and intentional aspects (UFO-C). The combination of UFO-A, B and C has been used to analyze, redesign and integrate reference conceptual models in a number of complex domains such as, for instance, Enterprise Modeling, Software Engineering, Service Science, Petroleum and Gas, Telecommunications, and Bioinformatics. Another recent development aimed towards a clear account of services and service-related concepts, and provided for a commitment-based account of the notion of service (UFO-S), UFO is the foundational ontology for OntoUML, an ontology modeling language.

Source: wikipedia.org [https://en.wikipedia.org/wiki/Upper_ontology#UFO_.28Unified_Foundational_Ontology.29]

[image: Book OFSCM]

Theory

Contents:

	Types and Individuals

	Identity

	Rigidity

Types and Individuals

OntoUML is built upon the fundamental distinction between Types and Individuals. And that is because we like classifying things.

Types are abstract things we create to help us perceive and classify the world around us. These things work as bundles of characteristics we can expect to encounter in other particular things - the individuals.

Let’s consider the type Person. Which characteristics does every Person have? We could say a head, a heart, arms, hands, legs, feet, eyes… Every person also has a weight, a height, an age. Maybe a name, place of birth, birthdate.

Now let’s consider you and me. I am individual. And so are you. If you are reading this, I am confident to say that we are both people. We both have a heart, we both have a particular height and weight. We exemplify what it is to be a Person. The relation that holds between us and the type Person is called instantiation.

In OntoUML, we represent classes as boxes, just like in UML. Every class must have a name and a stereotype, as depicted in the figure below:

[image: Examples of types]

Now, let’s see some other examples of types and individuals them:

	Person: Bill Gates, Linus Torvalds, Barack Obama, Steve Jobs,
Alan Turing, Messi

	Football Player: Neymar, Messi, Cristiano Ronaldo, Pelé, Maradona

	City: Rio de Janeiro, Milano, Barcelona, New York City, London,
Lisbon

	Operating System: Windows, OS X, Ubuntu

	Company: Apple, Samsung, Microsoft, Facebook, Nokia

If you pay close attention to the list, you will see that we’ve included Messi’s name as an instance of Person and Football Player. And that is fine! In fact, it very common that an individual simultaneously instantiates many types. Me, for example, besides being a Person, I’m a Software Developer, a Brazilian, an Adult and a Man.

Whenever we refer to the term extension of a type, we mean every individual that instantiates that type in a particular instant of time. As an example, let’s assume that the type Web Browser. Last year, we could say that its extension contained 5 individuals: Chrome, Internet Explorer, Safari, Firefox, Opera. This year, however, after Microsoft Edge’s release, the extension of Browser grew by 1.

Whenever the extension of a type is always included in the extension of another type, we say that the former is a subtype of the latter. To represent this constraint in OntoUML models, we use the generalization (some people call it specialization instead) relation. We find countless examples of type specializations:

	Doctor, Student and Child are subtypes of Person

	Table, Mouse and Ball are subtypes of Object

	Fridge, Stove and Microwave are subtypes of Appliance

We represent generalizations are lines with arrow heads on the end connected to the super-type, as shown in the figure below:

[image: Generalization]

When we build a model in OntoUML we are formally defining types by specifying the characteristics they impose on their instances.

Warning

OntoUML ONLY supports the specification of TYPES. Therefore, you CANNOT specify an INDIVIDUAL in an OntoUML model. Making an analogy to regular UML, you can create Class Diagrams, but there is no Object diagram.

Identity

Another fundamental ontological notion you need to grasp before you start modelling is the ontological notion of identity. To start the discussion, let’s take a look at the picture below:

[image: Venus de Milo]

As you might know, that is Aphrodite of Milos, better known as the Venus de Milo, an ancient Greek statue and one of the most famous works of ancient Greek sculpture (Wikipedia [https://en.wikipedia.org/wiki/Venus_de_Milo]). On the left side, it’s the statue’s current state, and on the right, it’s how it was supposably built. My question for you is: Do these pictures portrait the same individuals or different ones?. Is it the same statue that went through some changes or these changes destroyed the first individual (the statue with arms) and created a new one (the statue without arms)? If you think like most people, your answer would be: “Yes, they are the same individual.”. Now, what if the statue was broken into very little pieces, like in the picture below:

[image: Marble chips]

Would you say that these marble debris are still the statue? Somehow our intuition says no, right? These debris cannot be Venus anymore. But why do we say “Yes” to the first question and “No” to the second one? Because of our common sense identity principle for statue. An identity principle is a sort of function we use to distinguish two individuals. Let’s use the simplest example of all: the identity principle of sets. Two sets, A and B, are the same if, and only if, they have the same elements. Therefore, if A = {1,2} and B = {2,3} then A != B. So the identity of a set is defined by its members. Changing a member of a set changes the identity of the set. Now, let’s think about a more complicated example. Let’s say, the identity principle we adopt for people. Could we say that someone’s identity depends on their name? Or some sort of identification code, like the American ‘social security’, the Brazilian ‘CPF’ or the Italian ‘codice fiscale’? The answer is NO! These can’t be used as our identification function. And I’ll tell you why…

Let’s start with a Person’s name. Did you ever meet two folks with the very same name? I have. If you don’t believe, just go on Facebook and experiment search for common names of your country. I just searched for “João Carlos da Silva”, a fairly common Brazilian name, and I found at least 5 guys with that exact name. If name was our identity function, we would not be able to distinguish between them. Another problem with using name as identity is that often, people change their names. Our function needs to be not only able to distinguish two individuals in the same moment in time, but also through time. How else would we be able to meet someone today and recognize that same person tomorrow? So, our function needs to always return the same individual for a given input. Now, let’s analyze the reason why the social security number (SSN), the codice fiscale and the CPF are not very good identity principles for people. The answer is quite simple, our function needs to apply to everybody. If you are not American or never worked in the USA, you probably don’t have a SSN, right? Even young children born in the USA might not have. The last important fact about identity principle is that every individual must have exactly one. So, what is the identity principle for a person? One’s fingerprint, iris pattern, DNA? Well, it is really hard to define it, even though we know it is there.

What we can “touch” are what’s called the identity conditions. These are “parts” of the identity function, necessary conditions for identity but not sufficient by themselves. In order for me to consider A and B as the same Person they need to have the same birth date. And the statue need to be made of the same material. Why identity principles and conditions are important for us? Because by thinking about them we are guided in the construction of our types hierarchy. They impose constraints on how we can combine the different OntoUML constructs to design our conceptual models. Will talk about these constraints when we present the stereotypes usage. For now, just keep in mind that: Some types have the characteristic of providing identity principles for their instances. They are stereotype as: «Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity». Here are some examples:

[image: Identity providers]

Some other types don’t provide identity principle for their instances, but they all share a common one. They are stereotyped as: «Subkind», «Role» and «Phase». Here are some examples:

[image: Inherited identity]

Some other types don’t provide identity and their instances follow different identity principles. They are stereotyped as: «RoleMixin», «Mixin» and «Category». Here are some examples:

[image: Mixed identity]

Rigidity

Now that you are already familiar with the notion of type, individual and instantiation, let’s go through a fundamental ontological meta-property of types - rigidity. To start, let’s take a look at the following pictures:

[image: Dog phases]

They show a dog’s development through the years (let’s call him Rex for now). In the first frame (and maybe also in the second) Rex is a Puppy. In the third one he is not a Puppy anymore, but an Adult. However, in all three frames Rex is a Dog and a French Bulldog. Let’s focus on the types Dog and French Bulldog. Can you imagine any other point in time, besides the three shown in the pictures, in which Rex ceased to be either a Dog or a Bulldog? I guess not. Let’s expand our imagination a little. Can you imagine any individual that used to be a Dog but is not anymore? I bet the answer is also no.

If an individual must instantiate a given type in all possible scenarios in which the individual exists, we call that type RIGID. In other words, rigid types are the ones who define essential characteristics to their instances. Other examples of rigid types are: Person, Car, Band, Apple, Country and Company. List of rigid stereotypes: «Category», «Collective», «Kind», «Mode», «Quality»,
«Quantity», «Relator», and «Subkind».

[image: Rigid examples]

Now, let’s focus solely on the type Puppy. By looking at the pictures, we can see that Rex used to be a puppy, but stopped being one after he grew older. Just like Rex, every other dog was once a puppy or will cease to be one someday. If every individual that instantiate a given type in a particular time can cease to do so and still exists, then we call that type ANTI-RIGID. Examples of anti-rigid types are: Student, Employee, Spouse, Elder, Living Person and Healthy Person. List of anti-rigid stereotypes: «Role», «Phase» and «RoleMixin»

[image: AntiRigid examples]

Class stereotypes

Sortals:

	Kind

	Subkind

	Phase

	Role

	Collective

	Quantity

	Relator

NonSortals:

	Category

	PhaseMixin

	RoleMixin

	Mixin

Aspects:

	Mode

	Quality

Kind

	Category
	RigidSortal

	Provides identity
	yes

	Identity principle
	simple

	Rigidity
	rigid

	Dependency
	optional

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Phase, Role

	Forbidden associations
	Derivation, Structuration, SubCollectionOf, SubQuantityOf

	Abstract
	undefined

Definition

A «Kind» is construct you are going to use in most of your models. It is used to represent rigid concepts that provide an identity principle for their instances and do not require a relational dependency. A «Kind» represent a Functional Complex, i.e., a whole that has parts contributing in different ways for its functionality (see the ComponentOf relation for more details about functional parts). Let’s see some examples:

[image: Kind examples]

Constraints

C1: A «Kind» cannot have an identity provider («Kind», «Collective», «Quality», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Kind forbidden 1]

C2: A «Kind» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-type.

[image: Kind forbidden 2]

C3: A «Kind» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

C4: As a rigid type, a «Kind» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

Common questions

Q1: If a «Kind» is relationally independent, does that mean we cannot define relations for theses types?

A1: No! When we say that a «Kind» is relationally independent, we mean that it does not necessarily require a relation to be defined, like a «Role» does. Here is an example in which a «Kind» has a dependency.

[image: Example O1]

This example was extracted from the Software Requirements Reference Ontology (SRRO). Click here [http://web.archive.org/web/20171008152212/http://www.menthor.net/srro.html] to take a look at it.

Examples

EX1: Fragment from the Configuration Management Task Ontology (see more [http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html]):

[image: Example MTO]

EX2: Fragment from the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Subkind

	Category
	RigidSortal

	Provides identity
	no

	Identity principle
	simple

	Rigidity
	rigid

	Dependency
	optional

	Allowed supertypes
	Kind, Subkind, Collective, Quantity, Relator, Category, Mixin, Mode, Quality

	Allowed subtypes
	Subkind, Phase, Role

	Forbidden associations
	Structuration

	Abstract
	undefined

Definition

A «Subkind» is a construct used to represent rigid
specializations of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity»). By default, its usage do not require a relational dependency. Let’s see some examples:

[image: Example]

Constraints

C1: A «Subkind» must always have exactly one identity provider
(«Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). Therefore, our examples in
the first figure should be modelled as:

[image: Subkind application 1]

C2: Because it is a rigid type, a «Subkind» cannot have an
anti-rigid type («Role», «Phase», «RoleMixin») as an ancestor.
Therefore, the following fragments would not be allowed:

[image: Subkind forbidden 1]

C3: Since every instance of a «Subkind» follows the same identity
principle, a «Subkind» cannot have an mixin type («Category», «Mixin», «RoleMixin») as a descendant, i.e., a direct or indirect subtype.
Fragments like the ones below are not allowed:

[image: Subkind forbidden 2]

Common questions

Q1: Are subkinds only used to specialize kinds?

A1: No! Even
though the name might be a little misleading, a «Subkind» may be used to
specialize any identity provider, which includes «Collective»,
«Quantity» and «Relator».

Examples

EX1: Usually, subkinds come in groups, like in the examples below:

[image: Subkind application 2]

EX2: Fragment from the Normative Acts Ontology (see
more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example NAO]

EX3: Fragment of a conceptual model about Brazilian Universities
(see more [http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html]):

[image: Example University]

Phase

	Category
	AntiRigidSortal

	Provides identity
	no

	Identity principle
	simple

	Rigidity
	antirigid

	Dependency
	optional

	Allowed supertypes
	Kind, Subkind, Collective, Quantity, Relator, Phase, Mixin, PhaseMixin, Mode, Quality, Category

	Allowed subtypes
	Phase, Role

	Forbidden associations
	Structuration

	Abstract
	undefined

Definition

The «Phase» stereotype is used to represent anti-rigid subtypes of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») that are instantiated by changes in intrinsic properties (e.g. the age of a person, the color of an object, the condition of a car). All instances of a particular «Phase» must follow the same identity principle. Phases always come in partitions.

Note

Tip: When defining a phase partition, think about which property (or properties) variation is causing the instantiation of the phases and include it in your model. For instance, when defining the phases Child, Adult and Elder for Person, you should include an age property for the type Person.

Here are some examples of phases:

[image: Phase examples]

Constraints

C1: A «Phase» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). Our examples above should be modelled as:

[image: Phase application 1]

C2: A «Phase» must always be part of a partition (a generalization set disjoint and complete). Modeling a «Phase» as in example below is forbidden:

[image: Phase forbidden 2]

C3: A «Phase» cannot be a direct subtype of a «RoleMixin» or «Category».

[image: Phase forbidden 3]

C4: A «Phase» cannot be a super-type of a rigid type («Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity», «Subkind», «Category»).

[image: Phase forbidden 1]

C5: A «Phase» cannot be a super-type of a mixin type («Category», «RoleMixin», «Mixin»).

[image: Phase forbidden 4]

Common questions

Q1: Do I have to represent the intrinsic property which is affecting the instantiation of the phase?

A1: No, OntoUML does not require you to do that. However, whenever it is possible, you should represent everything needed to define the phase. On one hand, if you want to represent the Living and Deceased phases of a Person, it is ok. On the other hand, if representing Adult and Child, your model would be a lot more precise if you include the age property on your model and the OCL constraint defining the instantiation of the two phases.

Q2: Can I define phases using modes?

A2: Yes. The fragment below is an example of how to do that.

[image: Phase application 3]

Examples

EX1: Conceptual model about Brazilian Universities (see more [http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html]):

[image: Example Brazilian University]

Errata: Phase as subtype of Role (Class), no multiplicity on part-whole, not marked as material and multiplicity does not correspond with mediations, Role (Professor) has optional relation, no multiplicity on <<characterization>> relation with Field Quality, (Department gets identity from kind in different diagram), Class has no identity

Role

	Category
	AntiRigidSortal

	Provides identity
	no

	Identity principle
	simple

	Rigidity
	antirigid

	Dependency
	mandatory

	Allowed supertypes
	Kind, Subkind, Collective, Phase, Quantity, Relator, Role, RoleMixin, Mixin, Mode, Quality, Category, PhaseMixin

	Allowed subtypes
	Role

	Forbidden associations
	Structuration

	Abstract
	undefined

Definition

A «Role» is a construct used to represent anti-rigid
specializations of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») that are instantiated in relational contexts. All instances of a particular «Role» must follow the same
identity principle. Here are some examples of roles:

[image: Examples 0]

Constraints

C1: A «Role» must always have exactly one identity provider
(«Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). To model our list of roles
presented above, we should given them identity providers:

[image: Role application 1]

C2: Every «Role» must be connected, directly or indirectly, to a
«Mediation» relation, since it is a relationally dependent construct.
Continuing our example above, we should do the following:

[image: Role application 2]

Remember that you can’t defined a relational dependency with a minimum
cardinality of zero. Therefore, the fragment below is wrong!

[image: Role forbidden 1]

C3: A «Role» cannot be a supertype of a rigid type («Kind»,
«Subkind», «Collective», «Quantity», «Relator», «Category»).

[image: Role forbidden 2]

C4: A «Role» cannot be a supertype of a mixin types («Category»,
«RoleMixin», «Mixin»).

[image: Role forbidden 3]

Common questions

Q1: Can I define multiples dependencies for a «Role»?

A1: Yes,
there is no restriction in the number of dependencies one can define for
a «Role». However, think carefully before doing so. You might be adding
some unwanted instantiations to your ontology. This is an Ontological
Anti-Pattern, called Multiple Dependency (read more about it
here [https://www.researchgate.net/publication/268220197_Ontology_Validation_for_Managers])

Q2: Can a «Role» be used to specialize another «Role»?

A2: Yes,
there is no restriction regarding it. Again, take care when doing so.
Since the language only require at least one indirect dependency for a
«Role», you might forget to define additional dependencies for the
sub-types.

Examples

EX1: Conceptual model about roles in the Catholic clergy (see
more [http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html]):

[image: Example Catholic Clergy]

EX2: Fragment from an ontological analysis of a Human Genome scheme
(see more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example Human Genome]

Errata: No material derivation, bad material multiplicity, bad
memberOf multiplicity

EX3: Fragment of the OntoUML Org Ontology (O3) (see
more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Errata: Relator cannot be subtype of Relator, Category not
abstract and no subtypes (or just one), no material relation

Collective

	Category
	RigidSortal

	Provides identity
	yes

	Identity principle
	simple

	Rigidity
	rigid

	Dependency
	optional

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Phase, Role

	Forbidden associations
	ComponentOf, Derivation, Structuration, SubQuantityOf

	Abstract
	undefined

Definition

The «Collective» construct is used to represent rigid concepts that provide an identity principle for their instances. The main characteristic of a «Collective» is that it has an homogenous internal structure, i.e., all parts are perceived in the same way by the whole (see the «MemberOf» relation for more details about members of collections).

[image: Collective examples]

To decide whether or not to classify a concept as a collective, think about the relation between it has towards its parts (or members). Do all members are “equally perceived” by the whole (the collective)? In other words, do all members contribute in the same way to the functionality of the whole? If the answers are yes, you have a collective. It is important to keep in mind that some concepts, like Family or Fleet could be classified as both collectives and functional complexes. For instance, if we understand a family as a group of people with equal roles and responsibilities towards the family, we would say it is a collective. However, if we distinguish a person as the head of the family, and another as being responsible for the family’s income, we would say that a family is a functional complex.

[image: Family]

As the other identity provider stereotypes («Kind», «Quality», «Relator» and «Mode»), a «Collective» can be specialized by subkinds, phases and roles, as well as generalized by mixins and categories.

[image: Relator application 1]

Constraints

C1: A «Collective» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Collective forbidden 1]

C2: A «Collective» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-types.

[image: Collective forbidden 2]

C3: A «Collective» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Collective forbidden 3]

C4: As a rigid type, a «Collective» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Collective forbidden 4]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Fragment from the a conceptual model about the human genome (see more [http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html]):

[image: Example Human Genome]

EX2: Fragment from the Normative Acts Ontology (see more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example NOA]

Quantity

	Category
	RigidSortal

	Provides identity
	yes

	Identity principle
	simple

	Rigidity
	rigid

	Dependency
	optional

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Phase, Role

	Forbidden associations
	ComponentOf, Derivation, Structuration, SubCollectionOf

	Abstract
	undefined

Definition

The «Quantity» construct is used to represent rigid concepts that provide an identity principle for their instances. A «Quantity» represent uncountable things, like Water, Clay, or Beer. It represents a maximally topologically connected amount of matter. Quantities only have other quantities as parts (see the «SubQuantityOf» relation for more details about members of collections). Here are some examples:

[image: Quantity examples]

An easy way to decide whether a concept is a quantity or not, as yourself this: if you physically divide an instance of ‘x’ in two parts, are the resulting individuals two new instances of x? What if you divide another 5 or 10 times? If the answer is always yes, ‘x’ is a Quantity. To exemplify, let’s think about an pile of sand. If you divide the pile in two, you now have to new piles of sand, right? What if you do that again for each remaining part? We would have 4 piles of sand.

[image: Tannin heap]

As the other identity provider stereotypes («Kind», «Collective», «Relator», «Quality» and «Mode»), a Quantity can be specialized by subkinds, phases and roles, as well as generalized by mixins and categories.

[image: Quantity application 1]

Be careful not to confuse «Quantity» and «Quality».

Constraints

C1: A «Quantity» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Quantity forbidden 1]

C2: A «Quantity» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-types.

[image: Quantity forbidden 2]

C3: A «Quantity» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Quantity forbidden 3]

C4: As a rigid type, a «Quantity» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Quantity forbidden 4]

Common questions

Ask us some question if something is not clear …

Examples

No examples yet…

Relator

	Category
	RigidSortal

	Provides identity
	yes

	Identity principle
	simple

	Rigidity
	rigid

	Dependency
	mandatory

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Phase, Role

	Forbidden associations
	ComponentOf, Structuration, SubCollectionOf, SubQuantityOf

	Abstract
	undefined

Definition

The «Relator» construct is used to represent truth-makers of material relations, i.e., the “things” that must exist in order for two or more individuals to be connected by material relations. Because of this nature, relators are always dependent on other individuals to exist. Here are some examples of concepts classified as relators:

[image: Relator examples]

Note that the «Relator» meta-class is analogous to the «Kind», «Collective» and «Quantity» meta-classes, in the sense that it is rigid and provides an identity principle for its instances. The difference is that, instead of representing functional complexes, quantities or collections, a «Relator» represents the objectification of relational properties. The direct consequence is that relators can also be specialised by subkinds, phases and roles, and generalised by categories and mixins.

[image: Relator application 1]

Constraints

C1: A «Relator» must always be connected (directly or indirectly) to at least one relation stereotyped as «Mediation»

[image: Relator forbidden 1]

C2: The sum of the minimum cardinalities of the opposite ends of the mediations connected (directly or indirectly) to the «Relator» must be greater or equal to 2.

[image: Relator application 2]

C3: A «Relator» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Relator forbidden 2]

C4: A «Relator» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-type.

[image: Relator forbidden 3]

C5: A «Relator» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Relator forbidden 5]

C6: As a rigid type, a «Relator» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Relator forbidden 4]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Conceptual model about the Catholic Clergy (see more [http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html]):

[image: Example Catholic Clergy]

EX2: Fragment of a conceptual model representing the worldview of a possible parking lot management system (see more [http://web.archive.org/web/20171008152130/http://www.menthor.net/parking-lot.html]):

[image: Example Parking Lot]

EX3: UFO-S fragment focused on service offering (see more [http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html]):

[image: Example UFO-S]

EX4: Fragment of a conceptual model about the human genome (see more [http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html]):

[image: Example Human Genome]

Category

	Category
	RigidNonSortal

	Provides identity
	no

	Identity principle
	multiple

	Rigidity
	rigid

	Dependency
	optional

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Kind, Subkind, Collective, Quantity, Relator, Category, Mode, Quality, Role, Phase, RoleMixin, PhaseMixin, Mixin

	Forbidden associations
	Structuration

	Abstract
	True

Definition

A «Category» is a rigid mixin that does not require a dependency to be specified. It is used to aggregate essential properties to individuals which following different identity principles. Let’s see some examples:

[image: Category examples]

Categories are usually used in a refactoring process. For example, let’s suppose that you defined two classes in your model, Person and Animal. Now you want to state that either people and animals have a weight. You than create a «Category», which has weight, and generalize the existing classes into it.

Constraints

C1: A «Category» is always abstract. Notice that abstract classes are represented with an italic label.

[image: Category application 1]

C2: A «Category» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

[image: Category forbidden 1]

C3: A «Category» is a rigid construct, therefore it cannot have as ancestor an anti-rigid type, as: «Role», «RoleMixin», «Phase».

[image: Category forbidden 2]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Fragment from the ECG Ontology (see more [http://web.archive.org/web/20171008151934/http://www.menthor.net/ecg.html]):

[image: Example ECG]

EX2: Fragment from UFO-S, a commitment-based service ontology (see more [http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html]):

[image: Example UFO-S]

PhaseMixin

	Category
	AntiRigidNonSortal

	Provides identity
	no

	Identity principle
	multiple

	Rigidity
	antirigid

	Dependency
	mandatory

	Allowed supertypes
	Mixin, PhaseMixin, Category

	Allowed subtypes
	Phase, PhaseMixin, Role, RoleMixin

	Forbidden associations
	Structuration

	Abstract
	True

Definition

A «PhaseMixin» is the equivalent of «Phase» for types that aggregate instances with different identity principles. A class stereotyped as «PhaseMixin» is also an anti-rigid type. «PhaseMixin» is similar semantically to «RoleMixin» with the difference in relational dependency.

Constraints

C1: A «PhaseMixin» is always abstract. Notice that abstract classes
are represented with an italic label.

C2: A «PhaseMixin» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

C3: A «PhaseMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as: «Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

Common questions

Ask us some question if something is not clear …

Examples

Ask us some question if you can share an example with us …

RoleMixin

	Category
	AntiRigidNonSortal

	Provides identity
	no

	Identity principle
	multiple

	Rigidity
	antirigid

	Dependency
	mandatory

	Allowed supertypes
	Mixin, RoleMixin, Category, PhaseMixin

	Allowed subtypes
	Role, RoleMixin

	Forbidden associations
	Structuration

	Abstract
	True

Definition

A «RoleMixin» is the equivalent of «Role» for types that aggregate instances with different identity principles. A class stereotyped as «RoleMixin» is also an anti-rigid type whose instantiation depends on a relational property. Here are some examples:

[image: RoleMixin examples]

RoleMixins usually occur in one of the two patterns:

	Pattern 1: «RoleMixin» defined by roles

[image: RoleMixin application 1]

	Pattern 2: «RoleMixin» as a role of a «Category»

[image: RoleMixin application 2]

The second pattern is a more concise form of the first. They are semantically equivalent.

Constraints

C1: A «RoleMixin» is always abstract. Notice that abstract classes
are represented with an italic label.

[image: RoleMixin application 3]

C2: A «RoleMixin» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

C3: A «RoleMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as: «Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

[image: RoleMixin forbidden 1]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Fragment of the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

EX2: Fragment of a conceptual model about Brazilian Public Tenders (see more [http://web.archive.org/web/20171008152151/http://www.menthor.net/public-tenders.html]):

[image: Example BPT]

Mixin

	Category
	SemiRigidNonSortal

	Provides identity
	no

	Identity principle
	multiple

	Rigidity
	semirigid

	Dependency
	optional

	Allowed supertypes
	Mixin, Category

	Allowed subtypes
	Subkind, Kind, Collective, Quantity, Category, Mixin, Role, Phase, RoleMixin, PhaseMixin, Relator, Quality, Mode

	Forbidden associations
	Structuration

	Abstract
	True

Definition

A «Mixin» is a semi-rigid type, i.e., it “behaves” as a rigid type for some individuals and as an anti-rigid one for others (it’s the only stereotype with such feature in OntoUML). As the «Category» and the «RoleMixin», the «Mixin» meta-class characterizes individuals that follow different identity principles. Here are some examples of types that could be classified as «Mixin»:

[image: Mixin examples]

As categories, mixins are commonly applied during a refactoring process, in particular when we want to state that some properties are applied to both rigid and anti-rigid types. For instance, let’s consider that we defined the following types in our model, Car and Jewellery, a general concept for Ring, Necklace, etc. Now we want to define the type Luxury Good. In our worldview, every jewellery is luxurious, but only cars that are worth more than 30k dollars are. Since the value of a car changes through the years, being a luxurious car is a temporary classification, whilst being a jewellery is a permanent one. The type Luxury Good, therefore, is semi-rigid or a «Mixin».

[image: Mixin application 1]

Constraints

C1: A «Mixin» is always abstract. Note that abstract classes are represented with italic labels.

[image: Mixin application 2]

C2: A «Mixin» is a semi-rigid construct and because of that, it cannot have as ancestor either a rigid (other than «Category») or an anti-rigid type. Therefore, only mixins categories can be ancestor of other mixins.

[image: Mixin forbidden 1]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Conceptual model based on the Music Ontology (see more [http://web.archive.org/web/20171008152050/http://www.menthor.net/music-ontology.html]):

[image: Example Music]

EX2: Fragments extracted from the OntoUML Org Ontology (O3), a model about the active structure of organisations (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3 1]

[image: Example O3 2]

Mode

	Category
	Aspect

	Provides identity
	yes

	Identity principle
	single

	Rigidity
	rigid

	Dependency
	mandatory

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Role, Phase

	Forbidden associations
	Structuration, ComponentOf, SubCollectionOf, MemberOf, SubQuantityOf, Derivation

	Abstract
	True

Definition

A «Mode» is a particular type of intrinsic property that has no structured value. Like qualities, modes are also individuals that existentially depend on their bearers. Types stereotyped as «Mode» are also rigid. You can find some examples of modes below:

[image: Mode examples]

Constraints

C1: Every «Mode» must be (directly or indirectly) connected to an association end of at least one «Characterization» relation.

[image: Mode application 1]

C2: The multiplicity of the characterized end (opposite to the «Mode») must be exactly one. Therefore, the following examples are forbidden.

[image: Mode forbidden 3]

C3: Modes cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role», «RoleMixin», «Phase», «Relator», «Quality».

[image: Mode forbidden 2]

C4: Modes cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Category», «Mixin», «Relator», «Quality».

[image: Mode forbidden 1]

Common questions

Ask us some question if something is not clear …

Examples

EX1: Fragment from the Configuration Management Task Ontology (see more [http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html]):

[image: Example CMT]

EX2: Fragment from the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Quality

	Category
	Aspect

	Provides identity
	yes

	Identity principle
	single

	Rigidity
	rigid

	Dependency
	mandatory

	Allowed supertypes
	Category, Mixin

	Allowed subtypes
	Subkind, Role, Phase

	Forbidden associations
	ComponentOf, SubCollectionOf, MemberOf, SubQuantityOf, Derivation

	Abstract
	True

Definition

A «Quality» is a particular type of intrinsic property which has a
structured value. Qualities are things that are existentially dependent
on the things they characterize, called their bearers. Types stereotyped
as «Quality» are also rigid. OntoUML differentiates
between three types of qualities:

	Perceivable, which capture qualities that could be measured by an
agent with the appropriate instrument, like weight, height, color and
speed.

	Non-Perceivable, which represent properties which cannot be
directly measured by an instrument, like currency.

	Nominal, which are used to make reference to an individual, like
one’s name, a book’s ISBN or a credit card number.

Notice some examples of qualities in the next figure:

[image: Quality examples]

You can define different types of geometrical structures for a quality
value using dimensions and domains. Here is an example:

[image: Quality application 2]

Constraints

C1: A «Quality» must always be connected, through a «Characterization» to another type.

[image: Quality application 1]

C2: The multiplicity of the characterized end (opposite to the quality) must be exactly one. Therefore, the following examples are forbidden.

[image: Quality forbidden 1]

C3: Qualtities cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role», «RoleMixin», «Phase», «Relator», «Mode».

[image: Quality forbidden 2]

C4: Qualtities cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Category», «Mixin», «Relator», «Mode».

[image: Quality forbidden 3]

Common questions

Q1: Can I represent the property “height” as an attribute instead of a «Quality»?

A1: Yes. The decision to represent attributes or qualities is entirely up to you. It is useful to represent properties as qualities when you want to define different escales for the same characteristic. For instance, if you want to model that a Person has a “height” property, which can be measured in meters or centimeters you should explicitly represent the Height quality.

[image: Quality application 4]

Examples

No examples yet…

Relationship stereotypes

Content:

	Introduction

Associations:

	Formal

	Material

	Mediation

	Characterization

	Derivation

	Structuration

Part-Whole Aggregations:

	Part-Whole

	ComponentOf

	Containment

	MemberOf

	SubCollectionOf

	SubQuantityOf

Introduction

Relations are entities that glue together other entities. Every relation has a number of relata as arguments, which are connected or related by it. The number of a relation’s arguments is called its arity. As much as an unary property such as being Red, properties of higher arities such as being married-to, being heavier-than are universals, since they can be predicated of a multitude of individuals. Relations can be classified according to the types of their relata. There are relations between sets, between individuals, and between universals, but there are also cross-categorical relations, for example, between urelements and sets or between sets and universals. We divide relations into two broad categories, called Material and Formal relations. Formal relations hold between two or more entities directly without any further intervening individual. Examples of formal relations are:

	5 is greater than 3

	this day is part of this month

	N is subset of Q

but also the relations of instantiation, inherence, quale of a quality, association, existential dependence, among others – … relations that form the mathematical superstructure of our framework. Material relations, conversely, have material structure on their own and include examples such as:

	employments

	kisses

	enrollments

	flight connections

	commitments

The relata of a material relation are mediated by individuals that are called relators. Relators are individuals with the power of connecting entities:

	a flight connection, for example, founds a relator that connects airports

	an enrollment is a relator that connects a student with an educational institution

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005.

Formal

	Directed
	no

	Source end
	
	Multiplicity
	0 - *

	Target end
	
	Multiplicity
	0 - *

	Binary properties
	

Definition

The name «Formal» is short for Domain Comparative Formal Relation. This construct is used to represent relations that can be reduced to the comparison of the quality values that characterize the related individuals, like heavier-then, younger-then or cheaper-then. Here are some examples in OntoUML:

[image: Formal examples]

To specify how the relation can be reduced, use an OCL derivation rule:

context Person::lighter : Set(Person)
derive : Person.allInstances()->select(x | self.weight > x.weight)

Tip: Due to its ontological, the «Formal» relations have no constraints in OntoUML. Nonetheless, make sure the relation you are modeling is indeed a comparative one. Think about how to reduce the relation to a comparison between values and represent the necessary properties.

Common questions

Ask us some question if something is not clear …

Examples

EX1: Fragment from OntoEmerge, an ontology about Emergency Plans (see more [http://web.archive.org/web/20171008152105/http://www.menthor.net/ontoemerge.html]):

[image: Example OntoEmerge]

Material

	Directed
	no

	Source end
	
	Multiplicity
	1 - *

	Target end
	
	Multiplicity
	1 - *

	Binary properties
	
	Transitivity
	no

Definition

«Material» relations have material structure on their own and include examples such as employments, kisses, enrollments, flight, connections and commitments. The relata of a material relation are mediated by individuals that are called relators. Relators («Relator») are individuals with the power of connecting entities; a flight connection, for example, founds a relator that connects airports, an enrollment is a relator that connects a student with an educational institution. Relators play an important role in answering questions of the sort: what does it mean to say that John is married to Mary? Why is it true to say that Bill works for Company X but not for Company Y?.

Material relations are derived (via «Derivation») from relators and the mediation relations that connect them to the corresponding relata. Cardinality constraints of mediation relations collapse by derivation. Material relations are always affected by collapsed cardinality). Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations.

Common questions

Ask us some question if something is not clear …

Examples

EX1:

[image: Example marriage]

EX2:

[image: Example supervizor]

For more examples see «Relator», «Derivation», «Mediation», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Mediation

	Directed
	yes

	Source end
	
	Multiplicity
	1 - *

	Target end
	
	Multiplicity
	1 - *

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

We define a relation of «Mediation» between a «Relator» and the entities it connects. Mediation is a type of existential dependence relation (a form of nonfunctional inherence). It can be derived from the relation between the relata and the qua individiuals that compose the relator and that inhere in the relata. A «Relator» must mediate at least two distinct individuals.

Common questions

Ask us some question if something is not clear …

Examples

EX1:

[image: Mediation example]

For more examples see «Relator», «Material», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Characterization

	Directed
	yes

	Source end
	
	Multiplicity
	1 - 1

	Target end
	
	Allowed
	Quality, Mode

	Multiplicity
	1 - *

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

«Characterization» is a relation between a bearer type and its feature. Feature is intrinsic (inherent) moment of its bearer type, and thus existentially dependent on the bearer. Feature may be stereotyped as «Quality» or «Mode». Feature characterizes a bearer type iff every instance of bearer exemplifies the feature.

Common questions

Ask us some question if something is not clear …

Examples

For examples see «Quality» and «Mode».

Source:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Derivation

	Directed
	yes

	Source end
	
	Allowed
	Relator

	Multiplicity
	1 - 1

	Target end
	
	Allowed
	material

	Multiplicity
	1 - 1

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

«Material» relation can be completely derived (via «Derivation») from the «Relator» and the corresponding «Mediation» relations. Derivation makes the cardinality constraints of the mediation relations collapse (see «Material» relation, example 2).

Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations (see «Material» relation, example 1).

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: Example Treatment]

For more examples see «Relator», «Material», and Relator pattern.

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Structuration

	Directed
	yes

	Source end
	
	Allowed
	Quality

	Multiplicity
	0 - *

	Target end
	
	Allowed
	Quality, Mode

	Multiplicity
	1 - 1

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

Definition

«Structuration» relation allows structuring «Quality».

Common questions

Ask us some question if something is not clear …

Examples

For examples see «Quality».

Source:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Part-Whole

UML distinguishes between aggregation and composition only. OntoUML distinguishes among

	sharing

	shared part (white ◊)

	exclusive part (black ♦)

	multiplicity of relationship

	mandatory part with respect to the whole

	mandatory whole w.r.t. the part

	mandatory non-rigid type (e.g. role, phase, mixin)

OntoUML also distinguishes among various types of wholes and their parts

	functional whole (and ComponentOf relation)

	Collective (and SubCollectionOf and MemberOf relations)

	Quantity (and Containment and SubQuantityOf relations)

Examples

EX1: [image: Part-Whole Relations]

EX2: [image: Example of shared part]

Notice that maximum multiplicity of the whole is > 1.

EX3: [image: Exclusive Part]

Notice that maximum multiplicity of the whole is = 1.

EX4: [image: Optional Part]

Optional part w.r.t. the rigid whole. The whole doesn´t necessarily need any part.

EX5: [image: Mandatory Part]

Mandatory part w.r.t. the rigid whole. The whole does need a part, instances of the part may mute.

EX6: [image: Essential Part]

Essential part w.r.t. the rigid whole. The whole does need a part, instances mustn´t mute.

EX7: [image: Optional Whole]

Optional rigid whole w.r.t. the part. The part may exist alone, even without the whole.

EX8: [image: Mandatory Whole]

Mandatory rigid whole w.r.t. the part. The part must belong to some whole, instances of the whole may mute.

EX9: [image: Inseparable Part]

Inseparable part of the rigid whole. The part must belong to the same whole, instances of the whole mustn´t mute.

EX10: [image: Immutable Part]

Immutable part of the antirigid whole. Whenever the whole exists in the particular role or phase, its parts must be still the same instances – they cannot not mute. Compare to {essential}.

EX11: [image: Immutable Whole]

Immutable whole w.r.t. the antirigid part. Whenever the part exists in the particular role or phase, its wholes must be still the same instances – they cannot not mute. Instances of the whole may mute only as the part changes it´s role or phase.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

ComponentOf

	Directed
	yes

	Source end
	
	Multiplicity
	1 - *

	Target end
	
	Multiplicity
	0 - *

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

«ComponentOf» is a parthood relation between two complexes. Examples include:

	my hand is part of my arm;

	a car engine is part of a car;

	an Arithmetic and Logic Unit (ALU) is part of a Central Process Unit (CPU);

	a heart is part of a circulatory system.

Transitivity holds for certain cases but not for others, it depends on context. «ComponentOf» relation obeys weak supplementation principle (at least 2 parts are required, may be of different types).

Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are functional complexes.

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: Functional Complex]

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Containment

	Directed
	yes

	Source end
	
	Multiplicity
	1 - 1

	Target end
	
	Allowed
	Quantity

	Multiplicity
	1 - 1

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

«Containment» is a relation between a container and its contents – a «Quantity», e.g., a barrel contains beer.

Multiplicities of the containment relation must be exactly one for the same reason as those of the «SubQuantityOf» relation.

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: Typical Containment]

EX2: [image: Another Example of Containment]

EX3: [image: Examples of Containment]

See also

	SubQuantityOf

	Part-Whole

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

MemberOf

	Directed
	yes

	Source end
	
	Allowed
	Collective

	Multiplicity
	1 - *

	Target end
	
	Allowed
	Collective, Functional complex

	Multiplicity
	1 - *

	Binary properties
	
	Reflexivity
	no

	Transitivity
	no

	Symmetry
	no

	Cyclicity
	no

Definition

«MemberOf» is a parthood relation between a functional complex or a «Collective» (as a part) and a «Collective» (as a whole).

Examples include:

	a tree is part of forest;

	a card is part of a deck of cards;

	a fork is part of cutlery set;

	a club member is part of a club.

«MemberOf» relation obeys weak supplementation principle (at least 2 parts are required, may be of different types). The memberOf relation is intransitive.

For example, Kazi, Bobek, Nemo and others are members of the TJ Sokol Zizkov Youth Tourist Club. The TJ Sokol Zizkov Youth Tourist Club is the member of the Association of the Youth Tourist Clubs. But Kazi, Bobek, Nemo and others are not members of the Association of the Youth Tourist Clubs, since not persons but only clubs may be members of the association. Although transitivity does not hold across two «MemberOf» relations, a «MemberOf» relation followed by «SubCollectionOf» is transitive.

Constraints

C1: This relation can only represent essential parthood if the object representing the whole is extensional (i.e. provided that adding or removing of any member changes the identity of the collective). In this case, all parthood relations in which the whole is extensional are constrained as {essential} parthood relations.

C2: The classifier connected to the whole end must be a «Collective». The classifier connected to the part end can be either a «Collective» or functional complex.

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: MemberOf Relation]

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

SubCollectionOf

	Directed
	yes

	Source end
	
	Allowed
	Collective

	Multiplicity
	1 - 1

	Target end
	
	Allowed
	Collective

	Multiplicity
	1 - 1

	Binary properties
	
	Reflexivity
	no

	Transitivity
	yes

	Symmetry
	no

	Cyclicity
	no

Definition

«SubCollectionOf» is a parthood relation between two collectives. Examples include:

	the north part of the Black Forest is part of the Black Forest;

	the collection of Jokers in a deck of cards is part of that deck of cards;

	the collection of forks in cutlery set is part of that cutlery set;

	the collection of male individuals in a crowd is part of that crowd.

The subCollectionOf relation can be shareable in some cases while non-shareable in others. For example, the Kulik siblings is a collection of three members: Marie, Vaclav, and Karel. The same Kulik siblings are sub-collection of the Kulik family, as well as a sub-collection of the FC Bilsko football team, as well as a sub-collection of the Voluntary Firefighter Unit in Bilsko. On contrary, the local organization of the Agrarian Party in Borovno is a sub-collection of the Agrarian Party, but must not be a sub-collection of any other political party, because the statutes prohibit it. «Collective» is a type of collections (and collections are instances of collectives). Collection is an integral whole, or closure defined by a unifying relation. Closure means that no more parts or members can be added to the collection by its unifying relation.

Unlike «Quantity», «Collective» have members and their members may not be placed together (or connected topologically), but unified intentionally e.g. by the common role, or purpose, or social connection. Closure of the unifying relation makes the collective maximal, e.g. the football team is made up of all its members and no subset of its members can make up the same team. For this reason, the «SubQuantityOf» relation is irreflexive. Moreover, for the same reason, any super-collective can have at maximum one sub-collective of a given type. Finally, since every sub-collective of a super-collective is obtained by refining the unifying relation of the latter, the subCollectionOf relation is always transitive. Since collections are maximal, the «SubCollectionOf» parthood must have a cardinality constraint of one and exactly one in the sub-collection side. Addition or removal of a sub-collection (or even a member) of a collection may or may not change identity of the collection. E.g. new firefighter units are taken in the National Rescue System and some of the existing units cease to exist without changing identity of the National Rescue System. Similarly, the Voluntary Firefighter Unit in Karlik consists of three members: Velebil, Strasirybka, and Jech. Then Veselik applies for membership and is taken in the firefighter unit. It is still the same unit, its identity does not change. On contrary, imagine: Jarmila and Jaroslav are spouses. If Jaroslav died, the spousal will cease to exist. And the unifying relation of spousal does not even admit changing Jaroslav for Karel – such a change would change the identity of the spousal, as well. This means that collectives are not extensional (but intentional). That is why only the weak supplementation axiom holds for the subCollectionOf relation (unlike the «SubQuantityOf» relation, where the strong supplementation axiom holds). This axiom means among others that every super-collection must have at least two different types of sub-collections.

Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are collectives. Collectives are types as defined in the overview table above.

C2: The maximum cardinality constraint in the association end connected to the part must be one.

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: SubCollectionOf Relation]

See also

	Part-Whole

	«MemberOf»

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

SubQuantityOf

	Directed
	yes

	Source end
	
	Allowed
	Quantity

	Multiplicity
	1 - 1

	Target end
	
	Allowed
	Quantity

	Multiplicity
	1 - 1

	Binary properties
	
	Reflexivity
	no

	Transitivity
	yes

	Symmetry
	no

	Cyclicity
	no

Definition

«SubQuantityOf» is a parthood relation between two quantities, e.g.:

	alcohol is part of wine;

	plasma is part of blood;

	sugar is part of ice cream.

Quantities have not elements (or members). Since their members cannot be enumerated, they must be defined by a relation that unifies them into a connected whole (self-connectedness). Quantities are connected topologically (unlike e.g. collectives, which parts and members may not be placed together). Topological connection is characteristic for quantities and because of topological connection, sub-quantities cannot be shared among several super-quantities. For this reason, a subQuantityOf relation is always non-sharable. Since quantities do not have elements, they can be arbitrarily divided, like e.g. water. That´s why any quantity is defined to be maximal portion and can not be part of itself (water cannot be part of water). Since every part of a quantity is maximal (and self-connected), the SubQuantityOf parthood must have a cardinality constraint of one and exactly one in the sub-quantity side. E.g. since alcohol is a quantity (and, hence, maximal), there is exactly one quantity of alcohol which is part of a specific quantity of wine. Since quantity is maximal, it cannot have a quantity of the same kind as its part – i.e. the «SubQuantityOf» relation is irreflexive.

Nevertheless, a quantity can be part of another quantity (like glucose in wine) using the «SubQuantityOf» relation. The change of any of parts of the quantity changes the identity of the whole (i.e. quantities are extensional entities). That is why the strong supplementation axiom holds for the the «SubQuantityOf» relations (unlike «SubCollectionOf» relation, which on contrary holds only weaker axiom). For the same reason, all parts of a quantity are essential and «SubQuantityOf» relations are essential parthood relations. Further, since essential parthood relations are always transitive, «SubQuantityOf» is always transitive.

Constraints

C1: The «SubQuantityOf» relation is always non-shareable.

C2: A sub-quantity is always an essential part of its super-quantity (marked with {essential} constraint).

C3: The cardinality in the part-end must be exactly one.

C4: The «SubQuantityOf» quantities at its both ends. Quantities are types as defined in the overview table above.

Common questions

Ask us some question if something is not clear …

Examples

EX1: [image: Typical Subquantity]

EX2: [image: Another Example of Subquantity]

EX3: [image: Examples of Subquantity]

See also

	:ref:`part-whole

	«Containment»

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

OntoUML Anti-Patern Catalogue

This list of anti-patterns was created to help modellers to avoid creating models with unintended and often illogical results.

Contents

	BinOver anti-pattern

	DecInt anti-pattern

	DepPhase anti-pattern

	FreeRole anti-pattern

	GSRig anti-pattern

	HetColl anti-pattern

	HomoFunc anti-pattern

	ImpAbs anti-pattern

	MixIden anti-pattern

	MixRig anti-pattern

	MultDep anti-pattern

	PartOver anti-pattern

	RelComp anti-pattern

	RelOver anti-pattern

	RelRig anti-pattern

	RelSpec anti-pattern

	RepRel anti-pattern

	UndefFormal anti-pattern

	UndefPhase anti-pattern

	WholeOver anti-pattern

BinOver anti-pattern

	Full name
	Binary Relation between Overlapping Types

	Type
	Logical

	Feature
	Association

	Description
	A binary relation whose end types are overlapping characterizes this anti-pattern.

	Justification
	Modelers often do not perceive by themselves that two or more types overlap. This anti-pattern makes them aware of that and confronts modelers with the possibility to specify binary relation properties, like reflexivity, transitivity and symmetry.

	Constraints
	The Binary Relation Between Overlapping Types (BinOver) corresponds to an association, of any stereotype, that connected two types that compose an overlapping set. It means that the same individual may instantiate both ends of the relationship. A given relation <R> between types <Source> and <Target> characterize a BinOver occurrence when:

	<Source> equals <Target>

	<Source> is a direct or indirect subtype of <Target>

	<Target> is a direct or indirect subtype of <Source>

	<Source> and <Target> are sortals («Subkind», «Role» or «Phase») that share a common identity provider («Kind», «Quantity», «Collective») and there is no generalization set which makes them explicitly disjoint

	<Source> and <Target> are relators that share a common super-type and there is no generalization set which makes them explicitly disjoint

	<Source> and <Target> are modes that share a common super-type and there is no generalization set which makes them explicitly disjoint;

	<Source> and <Target> are mixins («Category», «Mixin» or «RoleMixin») that directly or indirectly generalize at least one common sortal («Kind», «Quantity», «Collective», «Subkind», «Role», «Phase»)

	<Source> and <Target> are mixins («Category», «Mixin» or «RoleMixin») that share a common mixin super-type and none of their subtypes are sortals

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Fix stereotype: change the stereotype of the relation to fit a desired binary property

	[OCL] Enforce binary property: create OCL invariant to enforce a desired binary property (as long as it is compatible with the embedded constraints of the stereotype).

	[New] Enforce disjointness: make the related types disjoint by the specification of a disjoint generalization set.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

DecInt anti-pattern

	Full name
	Deceiving Intersection

	Type
	Logical

	Feature
	Hierarchy

	Description
	An occurrence of the DecInt anti-pattern occurs when a type specializes two or more concrete types.

	Justification
	Investigate if the subtype with multiple generalizations is intentional or derived by the intersection (main) and if its extension is not empty.

	Contraints
	
	The specialization of the parents into Type must be syntactically valid, e.g. if type is a relator, all its parents must also be relators.

	There must be at least two parents for which the following conditions evaluate to true:

	Parent:subscript:`n`.isAbstract = false

	For all gs: Generalization Set whose common supertype is Parent:subscript:`n`, gs.isCovering = true

	Examples
	[image: Examples]

	Refactoring Plans
	
	[conditional] [Mod] Fix Generalization Set: can only be adopted if two or more parent types are made disjoint by a generalization set. The possible solutions are to remove the existing generalization set or set its isCovering property to true.

	[conditional] [Mod] Fix Identity Principle: can only be applied if Type is sortal («Subkind», «Role» or «Phase») and they do not follow the same identity principle. The action consists on defining the single identity provider.

	[Mod/Del] Invert/Delete Generalization: consists of deleting and/or inverting one or more generalizations from Type to one of the identified parents.

	[OCL] Derived by Intersection: create an OCL derivation or invariant constraint to specify that the extension of type is derived by the intersection of the extensions of two or more concrete parents:

context Parent1

inv: (self.oclIsTypeOf(Parent2) and self.oclIsTypeOf(Parent2))

implies self.oclIsTypeOf(Type)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

DepPhase anti-pattern

	Full name
	Relationally Dependent Phase

	Type
	Classification; Scope

	Feature
	Phase; Relator

	Description
	A class stereotyped as «Phase» connected to one or more «Mediation» associations.

	Justification
	Phases are instantiated when there is a change in an intrinsic property. Roles are instantiated when there is a change in a relational property. Selecting the «Phase» stereotype for a class but connecting it to a mediation is “mixing up” the two meta-categories.

	Contraints
	No additional constraints.

	Examples
	[image: Examples]

	Refactoring Plans
	
	[New/Mod] Make the role explicit: Create a «Role» as a parent type of the «Phase» and move the mediation it.

[image: RefactoringPlans]

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

FreeRole anti-pattern

	Full name
	Free Role Specialization

	Type
	Logical; Scope

	Feature
	Role; Relator

	Description
	A «Role» type connected to a «Relator» type through a «Mediation» association, is specialized in one or more «Role» types, which in turn are not connected to an additional «Mediation» association

	Justification
	Identify the condition required for the instantiation of the subtypes of the role that are not connected to any relator, since no particular condition was defined.

	Constraints
	The Free Role Specialization (FreeRole) anti-pattern occurs when a «Role» type connected to a «Relator» through a «Mediation» association, is specialized in other «Role» types, which do not directly own an additional «Mediation» association. Every free role must meet the following requirements:

	It cannot be directly connected to any mediation.

	It cannot be a direct or indirect subtype of a «RoleMixin» that is directly connected to a mediation from a hierarchy path that does not go through DefinedRole.

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Set derived role as derived: The instantiation of a free role defined by a derivation rule, which can be defined as follows:

context FreeRole-1 :: allInstances() : Set(FreeRole-1)

derive : DefinedRole.allInstances()->select(x | <CONDITION>)

	[New] Add independent relator: a free role is defined by another relator which has no relation to DefiningRelator. Implies the creation of a relator and a mediation, like in the structure:
[image: RefactoringPlanA]

	[New] Add a redefining material relation: a free role is defined by a redefining material relation, like in the structure:
[image: RefactoringPlanB]

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

GSRig anti-pattern

	Full name
	Generalization Set with Mixed Rigidity

	Type
	Classification; Scope

	Feature
	Hierarchy; Gen. Set

	Description
	A generalization set whose common super-type is rigid and from all its generalizations, at least one comes from an anti-rigid type and at least one comes from a rigid type.

	Justification
	Generalization sets groups generalizations leading to a common super-type, all defined using the same specialization criterion. If the super type is not a mixin and the subtypes have different rigidity properties, they probably do not belong in the same generalization set.

	Contraints
	No additional constrains.

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Fix subtype rigidity: choose the option if you conclude that one or more stereotype of the subtypes is wrong. Change them to achieve only rigid or anti-rigid subtypes for the generalization set.

	[New/Mod] Split generalization set: the generalization set aggregates multiple specialization criteria. Create additional generalization sets and move the respective generalizations.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

HetColl anti-pattern

	Full name
	Heterogeneous Collective

	Type
	Classification

	Feature
	Part-Whole

	Description
	A collection type connected to two or more different member parts through «MemberOf» relations.

	Justification
	The multiple part types, the main characteristic of this anti-pattern, indicate that the modeler might have confused the concepts of collection and functional complex or the different relations of membership and sub-collection.

	Contraints
	
	Only collections may instantiate the Whole.

	Only collections and functional complexes may instantiate all Part-n.

	Let M be the set of memberOf relations identified in an HetColl occurrence, w the class identified as the Whole, wholeType(r) the function that return the class connected to the whole end of a meronymic relation r, and ancestorSet(c) the function that returns all direct and indirect super types of a class c:

\[\forall m \in M, wholeType(m) = w \lor wholeType(m) \in ancestorsSet(w)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Fix subtype rigidity: choose the option if you conclude that one or more stereotype of the subtypes is wrong. Change them to achieve only rigid or anti-rigid subtypes for the generalization set.

	[New/Mod] Split generalization set: the generalization set aggregates multiple specialization criteria. Create additional generalization sets and move the respective generalizations.

	[New/Mod] Implicit rigid subtype: create rigid subtypes that are the new direct parents of one or more anti-rigid subtypes. If only one rigid subtype is created, the modeler can optionally set it as derived by negation of the other rigid subtypes. The following OCL template is proposed to achieve that:

context NewRigid::allInstances() : Set(NewRigid)

derive : RigidParent.allInstances()->select(x | not(x.oclIsTypeOf(Rigid1) or

x.oclsIsTypeOf(Rigid2) or … or x.oclIsTypeOf(Rigidn))

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

HomoFunc anti-pattern

	Full name
	Homogeneous Functional Complex

	Type
	Classification; Scope

	Feature
	Part-Whole

	Description
	A functional complex type connected to a single part through a «ComponentOf» relation.

	Justification
	If a whole is composed by a unique type of part, it is most likely that all of the part’s instances play the same role w.r.t. their whole. That homogeneous structure is not a characteristic of a functional complex.

	Contraints
	
	Only functional complexes may instantiate the Whole.

	Only functional complexes may instantiate the Part.

	Whole is not indirectly connected, at the whole end, to any componentOf.

	partOf’s lower bound multiplicity of the part end must be greater or equal to 2.

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Set as membership: Change the functional nature of Whole to and change the stereotype of the «ComponentOf» to «MemberOf».

[image: Refactor_A]

	[New] Add functional parts: Create one or more functional parts for Whole.

[image: Refactor_B]

	[New] Add part subtypes*: Create one or more subtypes of Part and connected them to Whole through exclusive «ComponentOf» relations. The original relation might be kept, but if so, the new relations must subset, redefine or specialize it.

[image: Refactor_C]

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

ImpAbs anti-pattern

	Full name
	Imprecise Abstraction

	Type
	Logical; Scope

	Feature
	Association

	Description
	A given association R characterizes an ImpAbs occurrence if at least one of the following holds: (i) R’s source end upper bound multiplicity is equal or greater than 2 and the Class connected to it has 2 or more subtypes; (ii) R’s target end upper bound multiplicity is equal or greater than 2 and the Class connected to it has 2 or more subtypes.

	Justification
	Representing a general relation occasionally causes the model to be too permissive because one “loses control” on how many instances of a particular subtype an instance of the opposite type may be connected to. Furthermore, is precludes the specification of other particular meta-property values, like isDerived and isReadOnly for all associations, and isEssential and isInseparable for meronymics.

	Contraints
	
	Let allSubtypes(c) be the function that return all direct and indirect subtypes of a class c, sourceEnd(a) and targetEnd(a) the functions that return the source and target ends of an association a, and upper(p) be the function that return the upper bound cardinality of a property p, then:

\[\begin{split}(upper(sourceEnd(Assoc)) \geq 2 \ \land \ \#allSubtypes(Source) \geq 2) \ \lor \\
(upper(targetEnd(Assoc)) \geq 2 \land \#allSubtypes(Target) \geq 2)\end{split}\]

	Let SoChildren be the set of all classes identified as Source Subtype-n, then:

\[\forall x \in SoChildren \ | \ x \in allSubtypes(Source)\]

	Let TgChildren be the set of all classes identified as Target Subtype-n, then:

\[\forall x \in TgChildren \ | \ x \in allSubtypes(Target)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Add multiplicity constraint: choose this option if there is a domain restriction that requires an instance of Source, or of one of its subtypes, to be connected to a minimum, maximum or precise number of instances of Target, or one of its subtypes. The following OCL invariant enforces the desired constraint:

context Source

inv: let sub1Size = self.target->select(x |

x.oclIsTypeOf(_’Target Subtype-1’))->size()

in sub1Size >= min1 and sub1Size <= max1

	[New] Add multiplicity constraint (subsetting association): this option has the same logical result of the first one. However, the results are achieved through the specification of a new association (using the same stereotype of Assoc) that subsets Assoc and whose cardinalities enforce the cardinality constraints.

[image: Refactor]

	[New] Add custom meta-property (subsetting association): choose this option if the relation between Source and Target have particular meta-properties (like isReadOnly and isEssential) when an instance of Source, or of one of its subtypes, to be connected to a minimum, maximum or precise number of instances of Target, or one of its subtypes.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

MixIden anti-pattern

	Full name
	Mixin With Same Identity

	Type
	Classification; Scope

	Feature
	Hierarchy; Mixin

	Description
	A non-sortal class specialized only by sortal types that follow the same identity principle (by inheriting it or supplying it).

	Justification
	The common characteristic of all different types of mixin classes is the aggregation of individuals that follow different identity principles. The reason to analyze this anti-pattern is that a non-sortal should not be specified as a sortal or it may convey the wrong meaning.

	Contraints
	
	For every Subtype-n, either one of the following holds: (i) Sortal-n = Identity Provider; or (ii) Identity Provider is an ancestor of Sortal-n

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod/New] Change Mixin to Sortal: change the stereotype of Mixin to either subkind, role or phase and create a generalization from Mixin to Identity Provider.

	[New] Add Sortal Subtypes: add new or existing sortal sub-types to Mixin that do not follow the same identity principle of defined by Identity Provider.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

MixRig anti-pattern

	Full name
	Mixin With Same Rigidity

	Type
	Classification; Scope

	Feature
	Hierarchy; Mixin

	Description
	A class stereotyped as «Mixin» specialized only by other classes that have the same rigidity property, i.e., are all rigid or all anti-rigid.

	Justification
	As all non-sortals, mixins aggregated individuals that follow different identity principles. Its distinguishing characteristic, though, is that is semi-rigid, i.e., it behaves as a rigid type for some individuals as an anti-rigid for others. This anti-pattern analyzes mixins that, despite their capabilities, only generalize types with the same rigidity.

	Contraints
	
	All sortals are rigid («Subkind», «Kind», «Quantity», «Collective» and «Category») or all sortals are anti-rigid («Role», «Phase» or «RoleMixin»)

	Examples
	[image: Examples]

	Refactoring Plans
	
	[conditional] [Mod] Change mixin to category: if all subtypes are rigid, and no anti-rigid subtype is expected to specialize «Mixin», change the stereotype to «Category».

	[conditional] [Mod] Change mixin to roleMixin: if all subtypes are anti-rigid, and no rigid subtype is expected to specialize «Mixin», change the stereotype to «RoleMixin».

	[Mod] Change subtypes stereotypes: this solution is a recognition that the semi-rigidity of «Mixin» is correct and consists in changing the stereotype of one or more subtypes of «Mixin» to properly characterize the semi-rigidity.

	[New/Mod] Add subtypes: set new or existing types as direct children of «Mixin» in order to properly characterize the semi-rigidity.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

MultDep anti-pattern

	Full name
	Multiple Relational Dependency

	Type
	Logical; Scope

	Feature
	Relator

	Description
	An object class directly connected to two distinct «Relator» types through «Mediation» associations. The relators may not be direct or indirect specializations of one another.

	Justification
	Externally dependent types, like all roles, require on dependency to characterize them. Whenever more than one is provided, it can indicate redundancy, scope issues and/or modeling an extra relation between the relators that characterize the dependency.

	Contraints
	
	Let R be the set of all Relator in a MultDep occurrence and isAncestor(c1,c2) the binary predicate that returns true if class c1 is a direct or indirect super-type of class (c2,c1):

\[\forall r1, r2 \in R, \lnot isAncestor(r1, r2) \ \land \ \lnot isAncestor(r2, r1)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[New/Mod] Unordered optional dependencies: Create a direct subtype of Type for each dependency. (In the example below, all dependencies were set as optional for Type)
[image: RefactoringPlanA]

	[New/Mod] Ordered optional dependencies: Create a hierarchy line for dependencies, which an instance of Type can only acquire after others. (In the example below, all dependencies were set as optional for Type).
[image: RefactoringPlanB]

	[New] Create dependency between relators: Create formal relations connecting relators that depend on one another. This solution generates an occurrence of AssCyc (which the user should be analyzed) and an occurrence of UndefFormal (which the user can ignore).

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

PartOver anti-pattern

	Full name
	Part Composing Overlapping Wholes

	Type
	Logical

	Feature
	Part-Whole

	Description
	A part composing two or more whole types whose extension overlap. The sum of the meronymics’ upper bound cardinalities of the whole end must be greater or equal to 2 or at least one of them be unlimited.

	Justification
	This structure is usually too permissive. It is often the case that some of the whole types should be disjoint or set as exclusive in the context of a single part instance.

	Contraints
	
	Let M be the set of identified meronymic relations, wholeEnd(m) the function that returns the association end connected to the whole of a meronymic relation m, and upper(p) the function that return the upper bound cardinality of a property p, then:

\[(\sum_{m \in M}^{} upper(wholeEnd(mn)) \geq 2\]

	Let O be the set of whole types that Part composes, then:

\[\exists x, y \in O \ | \ overlap(x, y)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple roles w.r.t the same part instance. Create an OCL invariant according to the template:

context Part

inv: self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over2.oclAsType(Agent)->asSet() and

self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet() and

self.over2.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet())

	[OCL] Partially exclusiveness: choose this option to set a subset of the whole types as exclusive.

	[Mod/New] Disjoint whole: Enforce whole types to be disjoint through the creation or alteration of a disjoint generalization set.

	Note: to make all types exclusive, every binary combination should be explicitly ruled out

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

RelComp anti-pattern

	Full name
	Relation Composition

	Type
	Logical

	Feature
	Association

	Description
	
	Consider two associations, no matter their stereotypes:
	A, that connects ASource and ATarget; and
B, that connects BSource and BTarget.

	For this anti-pattern to occur, one of the possible statements needs to be true:
	BSource equals or is a subtype of ATarget and BTarget equals or is a subtype of ATarget.
BSource equals or is a subtype of ASource and BTarget equals or is a subtype of ASource.

	Justification
	The instantiation of the two relations identified in this anti-pattern may restrict one another.

	Contraints
	
	A and B are different associations.

	The association A must have a minimum cardinality greater than 0 and a maximum greater than 1 in the association end connected to ATarget.

	One of the following sentences must evaluate to true:

\[\begin{split}(ATarget = BSource \ \lor \ ancestorOf(ATarget,BSource)) \land \\
(ATarget = BTarget \ \lor \ ancestorOf(ATarget, BTarget))\end{split}\]

\[\begin{split}(ASource = BSource \ \lor \ ancestorOf(ASource,BSource)) \land \\
(ASource = BTarget \ \lor \ ancestorOf(ASource, BTarget))\end{split}\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Set Existential Composition: add an OCL invariant to enforce that type B has an existential composition to type A:

context BSource

inv: self.bTarget->asSet()->forAll(y |

ASource.allInstances()->exists(z |

z.aTarget->asSet()->contains(self) and

z.aTarget->asSet()->contains(y))

	[OCL] Set Right universal Composition: add an OCL invariant to enforce that type B has a right universal composition to type A:

context BSource

inv: self.bTarget->asSet()->forAll(y |

ASource.allInstances()->forAll(z |

z.aTarget->asSet()->contains(self) implies

z.aTarget->asSet()->contains(y))

	[OCL] Set Left Universal Composition: add an OCL invariant to enforce that type B has a left universal composition to type A:

context BSource

inv: self.bTarget->asSet()->forAll(y |

ASource.allInstances()->forAll(z |

z.aTarget->asSet()->contains(y) implies

z.aTarget->asSet()->contains(self))

	[OCL] Set Forbidden Composition: add an OCL invariant to enforce that type B has a forbidden composition to type A:

context BSource

inv: self.bTarget->asSet()->forAll(y |

ASource.allInstances()->forAll(z |

not(z.aTarget->asSet()->contains(y) and

z.aTarget->asSet()->contains(self)))

	[OCL] Set Custom Existential Composition: add an OCL invariant to enforce that type B has a custom existential composition to type A:

context BSource

inv: self.bTarget->asSet()->forAll(y |

ASource.allInstances()->select(z |

z.aTarget->asSet()->contains(y) and

z.aTarget->asSet()->contains(self))->size()[>|<|=]n)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

RelOver anti-pattern

	Full name
	Relator Mediating Overlapping Types

	Type
	Logical

	Feature
	Relator

	Description
	A relator connected, through mediations, to two or more types whose extension possibly overlap. The sum of the mediations’ upper bound cardinalities of the mediated end must be greater than 2.

	Justification
	Although OntoUML imposes no syntactical constraints on formal relations, it does not mean that modelers can use them at will, what is a very common practice.

	Contraints
	
	Let M be the set of identified mediations, mediatedEnd(m) the function that returns the association end opposed to relator of a mediation m, and upper(p) the function that return the upper bound cardinality of a property p, then:

\[\sum_{}^{upper} (mediatedEnd(mn)) > 2\]

	Let O be the set of types mediated by Relator, then:

\[\exists x,y \in O \ | \ overlap(x,y)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Exclusiveness *: choose this option to forbid the same individual to play multiple roles w.r.t the same relator instance. Create an OCL invariant according to the following template:

context Relator

inv: self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over2.oclAsType(Agent)->asSet() and

self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet() and

self.over2.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet())

	[OCL] Partially exclusiveness: choose this option to forbid a subset of mediated types as exclusive.

	[Mod/New] Disjoint mediated: Enforce types to be disjoint through the creation or alteration of a disjoint generalization set.

* Note: to make all types exclusive, every binary combination should be explicitly ruled out

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

RelRig anti-pattern

	Full name
	Relator Mediating Rigid Types

	Type
	Logical; Scope

	Feature
	Relator

	Description
	A «Relator» connected to one or more rigid types through mediations.

	Justification
	When a type is connected to a mediation association, it means that it is externally dependent, i.e. for an individual to instantiate it, it must be related to another type. Usually, mediations define roles and roleMixins – anti-rigid types.

	Contraints
	
	Let relator(m) and mediated(m) be the functions that return, respectively, the relator and the mediated types connected to a mediation. Also, let M be the set of mediation-n and R the set of RigidType-n, then:

\[\forall m \in M, relator(m) = Relator \ \land \ mediated(m) \in R\]

	Let mediatedEnd(m) be the function that returns the association end connected to the mediated type of a given mediation m, isReadOnly(p) the function that return the value of the isReadOnly meta-property of an association end p and M the set of the identified mediations, then:

\[\forall m \in M, isReadOnly(mediatedEnd(m)) = true\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod/New] Set as role: choose this plan when a RigidType-n should be anti-rigid. If previously stereotype with a sortal stereotype, change it to role, if non-sortal, change to «RoleMixin». (If RigidType-n was stereotyped as «Kind», «Collective» or «Quantity», a new identity provider should be created for it using the same stereotype).
[image: RefactoringPlan1]

	[New/Mod] Add role subtype: choose this action if the mediation-n is optional for RigidType-n. Create a «Role» (for sortals) or a «RoleMixin» (for non-sortals) that specializes RigidType-n and move mediation-n to it.
[image: RefactoringPlan2]

	[Mod] Set as mode: choose this plan when RigidType-n is in fact an unstructured property of Relator-n. This is only true if the existential dependency specified in the mediation is reversed (RigidType-n should depend on «Relator» and not the other way around)

	[Mod] Set bidirectional existential dependency: choose this action if the event that creates the Relator is the same one that creates RigidType-n and also this relation established in the individuals creation may never change.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

RelSpec anti-pattern

	Full name
	Relation Specialization

	Type
	Logical

	Feature
	Association

	Description
	
	Two associations A, connecting ASource to ATarget, and B, connecting BSource to BTarget, such that:
	
	ASource is equal or a subtype of BSource and ATarget is equal or a subtype of BTarget; or

	ASource is equal or a subtype of BTarget and ATarget is equal or a subtype of BSource

	Justification
	The identified structure suggests the existence of a specialization between the relations or the need for including a subsetting, redefinition or disjoint constraint.

	Contraints
	
	A and B are different associations

	One of the following sentences must evaluate to true:

\[\begin{split}(ASource = BSource \ \lor \ ancestorOf(ASource,BSource)) \land \\
(ATarget = BTarget \ \lor \ ancestorOf(ATarget, BTarget))\end{split}\]

\[\begin{split}(ASource = BTarget \ \lor \ ancestorOf(ASource,BTarget)) \land \\
(ATarget = BSource \ \lor \ ancestorOf(ATarget, BSource))\end{split}\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Subset: this action should be taken if being connected through relation B implies being connected through relation A but not the other way around. The fix consists in adding one of A’s association ends to the subsetted properties of B’s respective association end. Alternatively, the following OCL can be included in the model*:

context BSource

inv subset : self.oclAsType(ASource).aTarget->includesAll(self.bTarget.oclAsType(ATarget)

	[Mod] Redefine: this action should be taken if being related through B implies not only being related through A but requiring that all related elements through A are related through B. The fix consists in adding one of A’s association ends at the redefined properties set of B’s respective association end. Alternatively, the following OCL can be included in the model*:

context BSource

inv subset : self.oclAsType(ASource).aTarget=self.bTarget.oclAsType(ATarget)

This solution is strongly discouraged if associations A and B related the same types.

	[Mod/New] Disjoint: this action should be taken if being related through B implies not being related through A. Differently from the first two, this constraint can only be enforce through OCL invariants:

context BSource

inv subset : self.oclAsType(ASource).aTarget->excludesAll(self.bTarget.oclAsType(ATarget)

	[New] Specialize: the logical implication of this solution is the same as enforcing subsetting. Nonetheless, it should only be selected if association B is a particular type of A and not only if the logical constraint is required.

*Assuming that the occurrence is the structural variation number 1.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

RepRel anti-pattern

	Full name
	Repeatable Relator Instances

	Type
	Logical

	Feature
	Relator

	Description
	A «Relator» connected to two or more «Mediation» associations, whose upper bound cardinalities at the relator end are greater than one.

	Justification
	Inspired in ORM’s uniqueness constraint (HALPIN; MORGAN, 2008), this anti-pattern aids the modeler in specifying the number of different relators instances that can mediated the exact same set of individuals.

	Contraints
	
	Let M be the set of the mediations that characterize RepRel, relatorEnd(m) the function that return the association end whose type is the relator of a mediation m, and upper(p) the function that return the upper bound cardinality of a property p, then:

\[\forall m \in M, upper(relatorEnd(m)) > 1\]

	Let M be the set of the mediations that characterize RepRel, relator(m) the function that returns the relator connected to a mediation m, then:

\[\forall m \in M, relator(m) = Relator \ \lor \ isAncestor(relator(m), Relator)\]

\[\exists m \in M, relator(m) = Relator\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[Mod] Fix upper cardinality: this plan is individually to the mediations. It consists in changing the maximum cardinality on the relator to a usually lower value.

	[OCL] Define uniqueness constraint (Current Relator): this plan is applied to a combination of the mediations. Although it can be applied more than once, for different combinations, it cannot be applied simultaneously with the historical relator plan. This should be taken if there is a limit of the number of coexistent relator instances that mediated the same combination of the mediated types. The following OCL invariant should be created (where <n> is the limit of “cloned” relators):

context Relator

inv: Relator.allInstances()->select(r | r <> self and

r.type1 = self.type1 and r.type2=self.type2)->size() = <n-1>

	[OCL] Define uniqueness constraint (Historical Relator): this plan applies to a combination of the mediations and, although it can be applied more than once for different combinations, it cannot be applied simultaneously with the current relator plan.

context Relator

inv: Relator.allInstances()->select(r | r<>self and r.type1=self.type1

and r.type2=self.type2 and concurrent(self,r))-> size()=<n-1>

context Relator::concurrent(r:Relator):Boolean

body: self.start = r.start or (self.start<r.start and r.start<self.end)

or (r.start<self.start and self.start<r.end)

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

UndefFormal anti-pattern

	Full name
	Undefined Formal Association

	Type
	Classification

	Feature
	Formal

	Description
	A «Formal» association defined between types that do not own or inherit quality properties, i.e., attributes or associations whose types are data types.

	Justification
	Although OntoUML imposes no syntactical constraints on formal relations, it does not mean that modelers can use them at will, what is a very common practice.

	Contraints
	
	Let qualities(c) be the function that return all qualities defined for a class c (through attributes or relations) and ancestor(c) be the function that return all direct and indirect super types of a class c, then:

\[\begin{split}\#qualities(Source) = 0 \ \land \ \forall x \in ancestor(Source), \#qualities(x) = 0 \ \land \\
\#qualities(Target) = 0 \ \land \ \forall x \in ancestor(Target), \#qualities(x) = 0\end{split}\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[New/Mod/OCL] Set as DCFR: choose this plan if the formal relation really is a DCFR. The fix consists in specifying the data types to which the relation will be derived from, set the relation as derived, and specify the OCL derivation rule.

	[Mod] Change stereotype: this alternative should be taken if one reaches the conclusion that the relation is better qualified by another stereotype. It consists only in changing the stereotype of the relation.

This solution is strongly discouraged if associations A and B related the same types.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

UndefPhase anti-pattern

	Full name
	Undefined Phase Partition

	Type
	Classification; Scope

	Feature
	Phase

	Description
	A partition of phases in whose common parent type does own or inherit attributes and associations connected to data types or modes.

	Justification
	Phases are anti-rigid types that are instantiated due to an alteration in an intrinsic property (a quality or a mode). For that reason, if the parent type of a partition does not have any intrinsic properties, how does one expect to define a partition?

	Contraints
	
	Let qualities(c) be the function that return all qualities defined for a class c (through attributes or relations) and ancestor(c) be the function that return all direct and indirect super types of a class c, then:

\[\#qualities(SuperType) = 0 \ \land \ \forall x \in ancestor(SuperType), \#qualities(x) = 0\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[New/OCL] Derived partition: choose this option if the instantiation of the phases is defined by a change in a quality’s value, owned by the common parent type, one of its ancestor, one of its parts or one of its modes. (e.g. Person-Adult-Child).

[image: Refactor_a]

	[New] Intentional partition: choose this option if the instantiation of the phases is defined by the appearance of a mode or a quality in the phases (e.g. Person-Sick-Healthy)

[image: Refactor_b]

	[Mod/New] Set phases as roles: choose this option if the instantiation of the phases is defined by a relational property and not an intrinsic one. To fix, change the stereotype of all phases to role and define their respective relational dependencies.

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

WholeOver anti-pattern

	Full name
	Whole Composed of Overlapping Parts

	Type
	Logical

	Feature
	Part-Whole

	Description
	A whole composed of two or more types whose extension possibly overlap. The sum of the meronymics’ upper bound cardinalities of the part end must be greater or equal to 2 or at least one of them be unlimited.

	Justification
	This structure is usually too permissive. It is often the case that some of the part types should be disjoint or set as exclusive in the context of a single whole instance.

	Contraints
	
	Let M be the set of identified meronymic relations, partEnd(m) the function that returns the association end connected to the part of a meronymic relation m, and upper(p) the function that return the upper bound cardinality of a property p, then:

\[(\sum_{m \in M}^{} upper(mediatedEnd(mn))) \geq 2\]

	Let O be the set of part types that compose Whole, then:

\[\exists x,y \in O \ | \ overlap(x,y)\]

	Examples
	[image: Examples]

	Refactoring Plans
	
	[OCL] Exclusiveness*: choose this option to forbid the same individual to play multiple roles w.r.t the same whole instance. Create an OCL invariant according to the following template:

context Whole

inv: self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over2.oclAsType(Agent)->asSet() and

self.over1.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet() and

self.over2.oclAsType(Supertype)->asSet()->excludesAll(

self.over3.oclAsType(Agent)->asSet())

	[OCL] Partially exclusiveness: choose this option to set a subset of the part types as exclusive.

	[New/Mod] Disjoint parts: Enforce part types to be disjoint through the creation or alteration of a disjoint generalization set.

	Note: to make all types exclusive, every binary combination should be explicitly ruled out

References:

Prince Sales, Tiago. (2014). Ontology Validation for Managers.

OntoUML Pattern Catalogue

To help you build your OntoUML models faster, we are assembling a list of known patterns. Please notice that this list is still under construction, so some patterns might still be missing.

Patterns:

	Phase Partition pattern

	Relator pattern

	RoleMixin pattern

	RoleMixin Alternative pattern

Phase Partition pattern

Generic pattern

[image: Generic Phase-Partition Pattern]

Examples

EX1:

[image: Example of Phase-Partition Pattern]

Relator pattern

Generic pattern

[image: image0]

Examples

EX1:

[image: image1]

EX2:

[image: image2]

RoleMixin pattern

Generic pattern

[image: Generic RoleMixin Basic Pattern]

Examples

See RoleMixin

RoleMixin Alternative pattern

Generic pattern

[image: Generic RoleMixin Alternative Pattern]

Examples

See RoleMixin

Contributing

This project is community-driven. Are you OntoUML enthusiast? We would like to invite you to cooperate on this documentation.

Reporting issues

Found a problem? Any uncertainty? Please create an issue on our GitHub repository github.com/OntoUML/OntoUML [https://github.com/OntoUML/OntoUML].

Solving issues

Feel free to solve any issue by yourself. You need just a GitHub account, you will fix the problem in your fork of the repository and then submit a pull request to the original one. Also, you can fork the repository and try to propose your OntoUML changes for the future version.

Documentation guidelines

	Keep the file structure, if you want to propose some big changes, please create an issue where we can discuss such big change.

	Do not use line breaks unless ending paragraph. In 21st century all human-usable editors and IDEs have functionality called “word wrap” that is configurable per user. Why should someone with wide screen see only 80 characters per line if want more?

	Try to be consistent, maximize readers understanding (do not expect any IT or Ontology expertise), interlink with other related pages and also label your pages.

	Take a look at Sphinx docs [http://www.sphinx-doc.org/en/master/contents.html] and reStructuredText Markup Specification [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html].

Index

Constraints

C1: Every «Mode» must be (directly or indirectly) connected to an association end of at least one «Characterization» relation.

[image: Mode application 1]

C2: The multiplicity of the characterized end (opposite to the «Mode») must be exactly one. Therefore, the following examples are forbidden.

[image: Mode forbidden 3]

C3: Modes cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role», «RoleMixin», «Phase», «Relator», «Quality».

[image: Mode forbidden 2]

C4: Modes cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Category», «Mixin», «Relator», «Quality».

[image: Mode forbidden 1]

Definition

A «Mode» is a particular type of intrinsic property that has no structured value. Like qualities, modes are also individuals that existentially depend on their bearers. Types stereotyped as «Mode» are also rigid. You can find some examples of modes below:

[image: Mode examples]

Examples

EX1: Fragment from the Configuration Management Task Ontology (see more [http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html]):

[image: Example CMT]

EX2: Fragment from the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Quality» must always be connected, through a «Characterization» to another type.

[image: Quality application 1]

C2: The multiplicity of the characterized end (opposite to the quality) must be exactly one. Therefore, the following examples are forbidden.

[image: Quality forbidden 1]

C3: Qualtities cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role», «RoleMixin», «Phase», «Relator», «Mode».

[image: Quality forbidden 2]

C4: Qualtities cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Category», «Mixin», «Relator», «Mode».

[image: Quality forbidden 3]

Definition

A «Quality» is a particular type of intrinsic property which has a
structured value. Qualities are things that are existentially dependent
on the things they characterize, called their bearers. Types stereotyped
as «Quality» are also rigid. OntoUML differentiates
between three types of qualities:

	Perceivable, which capture qualities that could be measured by an
agent with the appropriate instrument, like weight, height, color and
speed.

	Non-Perceivable, which represent properties which cannot be
directly measured by an instrument, like currency.

	Nominal, which are used to make reference to an individual, like
one’s name, a book’s ISBN or a credit card number.

Notice some examples of qualities in the next figure:

[image: Quality examples]

You can define different types of geometrical structures for a quality
value using dimensions and domains. Here is an example:

[image: Quality application 2]

Examples

No examples yet…

Common questions

Q1: Can I represent the property “height” as an attribute instead of a «Quality»?

A1: Yes. The decision to represent attributes or qualities is entirely up to you. It is useful to represent properties as qualities when you want to define different escales for the same characteristic. For instance, if you want to model that a Person has a “height” property, which can be measured in meters or centimeters you should explicitly represent the Height quality.

[image: Quality application 4]

Constraints

C1: A «Category» is always abstract. Notice that abstract classes are represented with an italic label.

[image: Category application 1]

C2: A «Category» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

[image: Category forbidden 1]

C3: A «Category» is a rigid construct, therefore it cannot have as ancestor an anti-rigid type, as: «Role», «RoleMixin», «Phase».

[image: Category forbidden 2]

Definition

A «Category» is a rigid mixin that does not require a dependency to be specified. It is used to aggregate essential properties to individuals which following different identity principles. Let’s see some examples:

[image: Category examples]

Categories are usually used in a refactoring process. For example, let’s suppose that you defined two classes in your model, Person and Animal. Now you want to state that either people and animals have a weight. You than create a «Category», which has weight, and generalize the existing classes into it.

Examples

EX1: Fragment from the ECG Ontology (see more [http://web.archive.org/web/20171008151934/http://www.menthor.net/ecg.html]):

[image: Example ECG]

EX2: Fragment from UFO-S, a commitment-based service ontology (see more [http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html]):

[image: Example UFO-S]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Mixin» is always abstract. Note that abstract classes are represented with italic labels.

[image: Mixin application 2]

C2: A «Mixin» is a semi-rigid construct and because of that, it cannot have as ancestor either a rigid (other than «Category») or an anti-rigid type. Therefore, only mixins categories can be ancestor of other mixins.

[image: Mixin forbidden 1]

Definition

A «Mixin» is a semi-rigid type, i.e., it “behaves” as a rigid type for some individuals and as an anti-rigid one for others (it’s the only stereotype with such feature in OntoUML). As the «Category» and the «RoleMixin», the «Mixin» meta-class characterizes individuals that follow different identity principles. Here are some examples of types that could be classified as «Mixin»:

[image: Mixin examples]

As categories, mixins are commonly applied during a refactoring process, in particular when we want to state that some properties are applied to both rigid and anti-rigid types. For instance, let’s consider that we defined the following types in our model, Car and Jewellery, a general concept for Ring, Necklace, etc. Now we want to define the type Luxury Good. In our worldview, every jewellery is luxurious, but only cars that are worth more than 30k dollars are. Since the value of a car changes through the years, being a luxurious car is a temporary classification, whilst being a jewellery is a permanent one. The type Luxury Good, therefore, is semi-rigid or a «Mixin».

[image: Mixin application 1]

Examples

EX1: Conceptual model based on the Music Ontology (see more [http://web.archive.org/web/20171008152050/http://www.menthor.net/music-ontology.html]):

[image: Example Music]

EX2: Fragments extracted from the OntoUML Org Ontology (O3), a model about the active structure of organisations (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3 1]

[image: Example O3 2]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «PhaseMixin» is always abstract. Notice that abstract classes
are represented with an italic label.

C2: A «PhaseMixin» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

C3: A «PhaseMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as: «Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

Definition

A «PhaseMixin» is the equivalent of «Phase» for types that aggregate instances with different identity principles. A class stereotyped as «PhaseMixin» is also an anti-rigid type. «PhaseMixin» is similar semantically to «RoleMixin» with the difference in relational dependency.

Examples

Ask us some question if you can share an example with us …

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «RoleMixin» is always abstract. Notice that abstract classes
are represented with an italic label.

[image: RoleMixin application 3]

C2: A «RoleMixin» aggregate individuals that follow different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

C3: A «RoleMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as: «Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

[image: RoleMixin forbidden 1]

Definition

A «RoleMixin» is the equivalent of «Role» for types that aggregate instances with different identity principles. A class stereotyped as «RoleMixin» is also an anti-rigid type whose instantiation depends on a relational property. Here are some examples:

[image: RoleMixin examples]

RoleMixins usually occur in one of the two patterns:

	Pattern 1: «RoleMixin» defined by roles

[image: RoleMixin application 1]

	Pattern 2: «RoleMixin» as a role of a «Category»

[image: RoleMixin application 2]

The second pattern is a more concise form of the first. They are semantically equivalent.

Examples

EX1: Fragment of the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

EX2: Fragment of a conceptual model about Brazilian Public Tenders (see more [http://web.archive.org/web/20171008152151/http://www.menthor.net/public-tenders.html]):

[image: Example BPT]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Collective» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Collective forbidden 1]

C2: A «Collective» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-types.

[image: Collective forbidden 2]

C3: A «Collective» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Collective forbidden 3]

C4: As a rigid type, a «Collective» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Collective forbidden 4]

Definition

The «Collective» construct is used to represent rigid concepts that provide an identity principle for their instances. The main characteristic of a «Collective» is that it has an homogenous internal structure, i.e., all parts are perceived in the same way by the whole (see the «MemberOf» relation for more details about members of collections).

[image: Collective examples]

To decide whether or not to classify a concept as a collective, think about the relation between it has towards its parts (or members). Do all members are “equally perceived” by the whole (the collective)? In other words, do all members contribute in the same way to the functionality of the whole? If the answers are yes, you have a collective. It is important to keep in mind that some concepts, like Family or Fleet could be classified as both collectives and functional complexes. For instance, if we understand a family as a group of people with equal roles and responsibilities towards the family, we would say it is a collective. However, if we distinguish a person as the head of the family, and another as being responsible for the family’s income, we would say that a family is a functional complex.

[image: Family]

As the other identity provider stereotypes («Kind», «Quality», «Relator» and «Mode»), a «Collective» can be specialized by subkinds, phases and roles, as well as generalized by mixins and categories.

[image: Relator application 1]

Examples

EX1: Fragment from the a conceptual model about the human genome (see more [http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html]):

[image: Example Human Genome]

EX2: Fragment from the Normative Acts Ontology (see more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example NOA]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Kind» cannot have an identity provider («Kind», «Collective», «Quality», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Kind forbidden 1]

C2: A «Kind» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-type.

[image: Kind forbidden 2]

C3: A «Kind» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

C4: As a rigid type, a «Kind» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

Definition

A «Kind» is construct you are going to use in most of your models. It is used to represent rigid concepts that provide an identity principle for their instances and do not require a relational dependency. A «Kind» represent a Functional Complex, i.e., a whole that has parts contributing in different ways for its functionality (see the ComponentOf relation for more details about functional parts). Let’s see some examples:

[image: Kind examples]

Examples

EX1: Fragment from the Configuration Management Task Ontology (see more [http://web.archive.org/web/20171008151908/http://www.menthor.net/cmto.html]):

[image: Example MTO]

EX2: Fragment from the OntoUML Org Ontology (O3) (see more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Common questions

Q1: If a «Kind» is relationally independent, does that mean we cannot define relations for theses types?

A1: No! When we say that a «Kind» is relationally independent, we mean that it does not necessarily require a relation to be defined, like a «Role» does. Here is an example in which a «Kind» has a dependency.

[image: Example O1]

This example was extracted from the Software Requirements Reference Ontology (SRRO). Click here [http://web.archive.org/web/20171008152212/http://www.menthor.net/srro.html] to take a look at it.

Constraints

C1: A «Phase» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). Our examples above should be modelled as:

[image: Phase application 1]

C2: A «Phase» must always be part of a partition (a generalization set disjoint and complete). Modeling a «Phase» as in example below is forbidden:

[image: Phase forbidden 2]

C3: A «Phase» cannot be a direct subtype of a «RoleMixin» or «Category».

[image: Phase forbidden 3]

C4: A «Phase» cannot be a super-type of a rigid type («Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity», «Subkind», «Category»).

[image: Phase forbidden 1]

C5: A «Phase» cannot be a super-type of a mixin type («Category», «RoleMixin», «Mixin»).

[image: Phase forbidden 4]

Definition

The «Phase» stereotype is used to represent anti-rigid subtypes of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») that are instantiated by changes in intrinsic properties (e.g. the age of a person, the color of an object, the condition of a car). All instances of a particular «Phase» must follow the same identity principle. Phases always come in partitions.

Note

Tip: When defining a phase partition, think about which property (or properties) variation is causing the instantiation of the phases and include it in your model. For instance, when defining the phases Child, Adult and Elder for Person, you should include an age property for the type Person.

Here are some examples of phases:

[image: Phase examples]

Examples

EX1: Conceptual model about Brazilian Universities (see more [http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html]):

[image: Example Brazilian University]

Errata: Phase as subtype of Role (Class), no multiplicity on part-whole, not marked as material and multiplicity does not correspond with mediations, Role (Professor) has optional relation, no multiplicity on <<characterization>> relation with Field Quality, (Department gets identity from kind in different diagram), Class has no identity

Common questions

Q1: Do I have to represent the intrinsic property which is affecting the instantiation of the phase?

A1: No, OntoUML does not require you to do that. However, whenever it is possible, you should represent everything needed to define the phase. On one hand, if you want to represent the Living and Deceased phases of a Person, it is ok. On the other hand, if representing Adult and Child, your model would be a lot more precise if you include the age property on your model and the OCL constraint defining the instantiation of the two phases.

Q2: Can I define phases using modes?

A2: Yes. The fragment below is an example of how to do that.

[image: Phase application 3]

Constraints

C1: A «Quantity» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Quantity forbidden 1]

C2: A «Quantity» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-types.

[image: Quantity forbidden 2]

C3: A «Quantity» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Quantity forbidden 3]

C4: As a rigid type, a «Quantity» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Quantity forbidden 4]

Definition

The «Quantity» construct is used to represent rigid concepts that provide an identity principle for their instances. A «Quantity» represent uncountable things, like Water, Clay, or Beer. It represents a maximally topologically connected amount of matter. Quantities only have other quantities as parts (see the «SubQuantityOf» relation for more details about members of collections). Here are some examples:

[image: Quantity examples]

An easy way to decide whether a concept is a quantity or not, as yourself this: if you physically divide an instance of ‘x’ in two parts, are the resulting individuals two new instances of x? What if you divide another 5 or 10 times? If the answer is always yes, ‘x’ is a Quantity. To exemplify, let’s think about an pile of sand. If you divide the pile in two, you now have to new piles of sand, right? What if you do that again for each remaining part? We would have 4 piles of sand.

[image: Tannin heap]

As the other identity provider stereotypes («Kind», «Collective», «Relator», «Quality» and «Mode»), a Quantity can be specialized by subkinds, phases and roles, as well as generalized by mixins and categories.

[image: Quantity application 1]

Be careful not to confuse «Quantity» and «Quality».

Examples

No examples yet…

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Relator» must always be connected (directly or indirectly) to at least one relation stereotyped as «Mediation»

[image: Relator forbidden 1]

C2: The sum of the minimum cardinalities of the opposite ends of the mediations connected (directly or indirectly) to the «Relator» must be greater or equal to 2.

[image: Relator application 2]

C3: A «Relator» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») as its direct or indirect super-type.

[image: Relator forbidden 2]

C4: A «Relator» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect super-type.

[image: Relator forbidden 3]

C5: A «Relator» cannot have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or indirect subtypes.

[image: Relator forbidden 5]

C6: As a rigid type, a «Relator» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

[image: Relator forbidden 4]

Definition

The «Relator» construct is used to represent truth-makers of material relations, i.e., the “things” that must exist in order for two or more individuals to be connected by material relations. Because of this nature, relators are always dependent on other individuals to exist. Here are some examples of concepts classified as relators:

[image: Relator examples]

Note that the «Relator» meta-class is analogous to the «Kind», «Collective» and «Quantity» meta-classes, in the sense that it is rigid and provides an identity principle for its instances. The difference is that, instead of representing functional complexes, quantities or collections, a «Relator» represents the objectification of relational properties. The direct consequence is that relators can also be specialised by subkinds, phases and roles, and generalised by categories and mixins.

[image: Relator application 1]

Examples

EX1: Conceptual model about the Catholic Clergy (see more [http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html]):

[image: Example Catholic Clergy]

EX2: Fragment of a conceptual model representing the worldview of a possible parking lot management system (see more [http://web.archive.org/web/20171008152130/http://www.menthor.net/parking-lot.html]):

[image: Example Parking Lot]

EX3: UFO-S fragment focused on service offering (see more [http://web.archive.org/web/20171007071851/http://www.menthor.net/ufo-s.html]):

[image: Example UFO-S]

EX4: Fragment of a conceptual model about the human genome (see more [http://web.archive.org/web/20171008151924/http://www.menthor.net/cshg.html]):

[image: Example Human Genome]

Common questions

Ask us some question if something is not clear …

Constraints

C1: A «Role» must always have exactly one identity provider
(«Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). To model our list of roles
presented above, we should given them identity providers:

[image: Role application 1]

C2: Every «Role» must be connected, directly or indirectly, to a
«Mediation» relation, since it is a relationally dependent construct.
Continuing our example above, we should do the following:

[image: Role application 2]

Remember that you can’t defined a relational dependency with a minimum
cardinality of zero. Therefore, the fragment below is wrong!

[image: Role forbidden 1]

C3: A «Role» cannot be a supertype of a rigid type («Kind»,
«Subkind», «Collective», «Quantity», «Relator», «Category»).

[image: Role forbidden 2]

C4: A «Role» cannot be a supertype of a mixin types («Category»,
«RoleMixin», «Mixin»).

[image: Role forbidden 3]

Definition

A «Role» is a construct used to represent anti-rigid
specializations of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity») that are instantiated in relational contexts. All instances of a particular «Role» must follow the same
identity principle. Here are some examples of roles:

[image: Examples 0]

Examples

EX1: Conceptual model about roles in the Catholic clergy (see
more [http://web.archive.org/web/20171008151858/http://www.menthor.net/clergy.html]):

[image: Example Catholic Clergy]

EX2: Fragment from an ontological analysis of a Human Genome scheme
(see more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example Human Genome]

Errata: No material derivation, bad material multiplicity, bad
memberOf multiplicity

EX3: Fragment of the OntoUML Org Ontology (O3) (see
more [http://web.archive.org/web/20171008152055/http://www.menthor.net/o3.html]):

[image: Example O3]

Errata: Relator cannot be subtype of Relator, Category not
abstract and no subtypes (or just one), no material relation

Common questions

Q1: Can I define multiples dependencies for a «Role»?

A1: Yes,
there is no restriction in the number of dependencies one can define for
a «Role». However, think carefully before doing so. You might be adding
some unwanted instantiations to your ontology. This is an Ontological
Anti-Pattern, called Multiple Dependency (read more about it
here [https://www.researchgate.net/publication/268220197_Ontology_Validation_for_Managers])

Q2: Can a «Role» be used to specialize another «Role»?

A2: Yes,
there is no restriction regarding it. Again, take care when doing so.
Since the language only require at least one indirect dependency for a
«Role», you might forget to define additional dependencies for the
sub-types.

Constraints

C1: A «Subkind» must always have exactly one identity provider
(«Kind», «Collective», «Quantity», «Relator», «Mode», «Quantity») as an ancestor (a direct or indirect super-type). Therefore, our examples in
the first figure should be modelled as:

[image: Subkind application 1]

C2: Because it is a rigid type, a «Subkind» cannot have an
anti-rigid type («Role», «Phase», «RoleMixin») as an ancestor.
Therefore, the following fragments would not be allowed:

[image: Subkind forbidden 1]

C3: Since every instance of a «Subkind» follows the same identity
principle, a «Subkind» cannot have an mixin type («Category», «Mixin», «RoleMixin») as a descendant, i.e., a direct or indirect subtype.
Fragments like the ones below are not allowed:

[image: Subkind forbidden 2]

Definition

A «Subkind» is a construct used to represent rigid
specializations of identity providers («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quantity»). By default, its usage do not require a relational dependency. Let’s see some examples:

[image: Example]

Examples

EX1: Usually, subkinds come in groups, like in the examples below:

[image: Subkind application 2]

EX2: Fragment from the Normative Acts Ontology (see
more [http://web.archive.org/web/20171007171607/http://www.menthor.net/normative-acts.html]):

[image: Example NAO]

EX3: Fragment of a conceptual model about Brazilian Universities
(see more [http://web.archive.org/web/20171007171848/http://www.menthor.net/university.html]):

[image: Example University]

Common questions

Q1: Are subkinds only used to specialize kinds?

A1: No! Even
though the name might be a little misleading, a «Subkind» may be used to
specialize any identity provider, which includes «Collective»,
«Quantity» and «Relator».

Examples

EX1:

[image: Example of Phase-Partition Pattern]

Generic pattern

[image: Generic Phase-Partition Pattern]

Examples

EX1:

[image: image1]

EX2:

[image: image2]

Generic pattern

[image: image0]

Examples

See RoleMixin

Generic pattern

[image: Generic RoleMixin Basic Pattern]

Examples

See RoleMixin

Generic pattern

[image: Generic RoleMixin Alternative Pattern]

Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are functional complexes.

Definition

«ComponentOf» is a parthood relation between two complexes. Examples include:

	my hand is part of my arm;

	a car engine is part of a car;

	an Arithmetic and Logic Unit (ALU) is part of a Central Process Unit (CPU);

	a heart is part of a circulatory system.

Transitivity holds for certain cases but not for others, it depends on context. «ComponentOf» relation obeys weak supplementation principle (at least 2 parts are required, may be of different types).

Examples

EX1: [image: Functional Complex]

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

«Containment» is a relation between a container and its contents – a «Quantity», e.g., a barrel contains beer.

Multiplicities of the containment relation must be exactly one for the same reason as those of the «SubQuantityOf» relation.

Examples

EX1: [image: Typical Containment]

EX2: [image: Another Example of Containment]

EX3: [image: Examples of Containment]

See also

	SubQuantityOf

	Part-Whole

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Constraints

C1: This relation can only represent essential parthood if the object representing the whole is extensional (i.e. provided that adding or removing of any member changes the identity of the collective). In this case, all parthood relations in which the whole is extensional are constrained as {essential} parthood relations.

C2: The classifier connected to the whole end must be a «Collective». The classifier connected to the part end can be either a «Collective» or functional complex.

Definition

«MemberOf» is a parthood relation between a functional complex or a «Collective» (as a part) and a «Collective» (as a whole).

Examples include:

	a tree is part of forest;

	a card is part of a deck of cards;

	a fork is part of cutlery set;

	a club member is part of a club.

«MemberOf» relation obeys weak supplementation principle (at least 2 parts are required, may be of different types). The memberOf relation is intransitive.

For example, Kazi, Bobek, Nemo and others are members of the TJ Sokol Zizkov Youth Tourist Club. The TJ Sokol Zizkov Youth Tourist Club is the member of the Association of the Youth Tourist Clubs. But Kazi, Bobek, Nemo and others are not members of the Association of the Youth Tourist Clubs, since not persons but only clubs may be members of the association. Although transitivity does not hold across two «MemberOf» relations, a «MemberOf» relation followed by «SubCollectionOf» is transitive.

Examples

EX1: [image: MemberOf Relation]

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are collectives. Collectives are types as defined in the overview table above.

C2: The maximum cardinality constraint in the association end connected to the part must be one.

Definition

«SubCollectionOf» is a parthood relation between two collectives. Examples include:

	the north part of the Black Forest is part of the Black Forest;

	the collection of Jokers in a deck of cards is part of that deck of cards;

	the collection of forks in cutlery set is part of that cutlery set;

	the collection of male individuals in a crowd is part of that crowd.

The subCollectionOf relation can be shareable in some cases while non-shareable in others. For example, the Kulik siblings is a collection of three members: Marie, Vaclav, and Karel. The same Kulik siblings are sub-collection of the Kulik family, as well as a sub-collection of the FC Bilsko football team, as well as a sub-collection of the Voluntary Firefighter Unit in Bilsko. On contrary, the local organization of the Agrarian Party in Borovno is a sub-collection of the Agrarian Party, but must not be a sub-collection of any other political party, because the statutes prohibit it. «Collective» is a type of collections (and collections are instances of collectives). Collection is an integral whole, or closure defined by a unifying relation. Closure means that no more parts or members can be added to the collection by its unifying relation.

Unlike «Quantity», «Collective» have members and their members may not be placed together (or connected topologically), but unified intentionally e.g. by the common role, or purpose, or social connection. Closure of the unifying relation makes the collective maximal, e.g. the football team is made up of all its members and no subset of its members can make up the same team. For this reason, the «SubQuantityOf» relation is irreflexive. Moreover, for the same reason, any super-collective can have at maximum one sub-collective of a given type. Finally, since every sub-collective of a super-collective is obtained by refining the unifying relation of the latter, the subCollectionOf relation is always transitive. Since collections are maximal, the «SubCollectionOf» parthood must have a cardinality constraint of one and exactly one in the sub-collection side. Addition or removal of a sub-collection (or even a member) of a collection may or may not change identity of the collection. E.g. new firefighter units are taken in the National Rescue System and some of the existing units cease to exist without changing identity of the National Rescue System. Similarly, the Voluntary Firefighter Unit in Karlik consists of three members: Velebil, Strasirybka, and Jech. Then Veselik applies for membership and is taken in the firefighter unit. It is still the same unit, its identity does not change. On contrary, imagine: Jarmila and Jaroslav are spouses. If Jaroslav died, the spousal will cease to exist. And the unifying relation of spousal does not even admit changing Jaroslav for Karel – such a change would change the identity of the spousal, as well. This means that collectives are not extensional (but intentional). That is why only the weak supplementation axiom holds for the subCollectionOf relation (unlike the «SubQuantityOf» relation, where the strong supplementation axiom holds). This axiom means among others that every super-collection must have at least two different types of sub-collections.

Examples

EX1: [image: SubCollectionOf Relation]

See also

	Part-Whole

	«MemberOf»

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Constraints

C1: The «SubQuantityOf» relation is always non-shareable.

C2: A sub-quantity is always an essential part of its super-quantity (marked with {essential} constraint).

C3: The cardinality in the part-end must be exactly one.

C4: The «SubQuantityOf» quantities at its both ends. Quantities are types as defined in the overview table above.

Definition

«SubQuantityOf» is a parthood relation between two quantities, e.g.:

	alcohol is part of wine;

	plasma is part of blood;

	sugar is part of ice cream.

Quantities have not elements (or members). Since their members cannot be enumerated, they must be defined by a relation that unifies them into a connected whole (self-connectedness). Quantities are connected topologically (unlike e.g. collectives, which parts and members may not be placed together). Topological connection is characteristic for quantities and because of topological connection, sub-quantities cannot be shared among several super-quantities. For this reason, a subQuantityOf relation is always non-sharable. Since quantities do not have elements, they can be arbitrarily divided, like e.g. water. That´s why any quantity is defined to be maximal portion and can not be part of itself (water cannot be part of water). Since every part of a quantity is maximal (and self-connected), the SubQuantityOf parthood must have a cardinality constraint of one and exactly one in the sub-quantity side. E.g. since alcohol is a quantity (and, hence, maximal), there is exactly one quantity of alcohol which is part of a specific quantity of wine. Since quantity is maximal, it cannot have a quantity of the same kind as its part – i.e. the «SubQuantityOf» relation is irreflexive.

Nevertheless, a quantity can be part of another quantity (like glucose in wine) using the «SubQuantityOf» relation. The change of any of parts of the quantity changes the identity of the whole (i.e. quantities are extensional entities). That is why the strong supplementation axiom holds for the the «SubQuantityOf» relations (unlike «SubCollectionOf» relation, which on contrary holds only weaker axiom). For the same reason, all parts of a quantity are essential and «SubQuantityOf» relations are essential parthood relations. Further, since essential parthood relations are always transitive, «SubQuantityOf» is always transitive.

Examples

EX1: [image: Typical Subquantity]

EX2: [image: Another Example of Subquantity]

EX3: [image: Examples of Subquantity]

See also

	:ref:`part-whole

	«Containment»

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

«Characterization» is a relation between a bearer type and its feature. Feature is intrinsic (inherent) moment of its bearer type, and thus existentially dependent on the bearer. Feature may be stereotyped as «Quality» or «Mode». Feature characterizes a bearer type iff every instance of bearer exemplifies the feature.

Examples

For examples see «Quality» and «Mode».

Source:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

«Material» relation can be completely derived (via «Derivation») from the «Relator» and the corresponding «Mediation» relations. Derivation makes the cardinality constraints of the mediation relations collapse (see «Material» relation, example 2).

Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations (see «Material» relation, example 1).

Examples

EX1: [image: Example Treatment]

For more examples see «Relator», «Material», and Relator pattern.

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

The name «Formal» is short for Domain Comparative Formal Relation. This construct is used to represent relations that can be reduced to the comparison of the quality values that characterize the related individuals, like heavier-then, younger-then or cheaper-then. Here are some examples in OntoUML:

[image: Formal examples]

To specify how the relation can be reduced, use an OCL derivation rule:

context Person::lighter : Set(Person)
derive : Person.allInstances()->select(x | self.weight > x.weight)

Tip: Due to its ontological, the «Formal» relations have no constraints in OntoUML. Nonetheless, make sure the relation you are modeling is indeed a comparative one. Think about how to reduce the relation to a comparison between values and represent the necessary properties.

Examples

EX1: Fragment from OntoEmerge, an ontology about Emergency Plans (see more [http://web.archive.org/web/20171008152105/http://www.menthor.net/ontoemerge.html]):

[image: Example OntoEmerge]

Common questions

Ask us some question if something is not clear …

Definition

«Material» relations have material structure on their own and include examples such as employments, kisses, enrollments, flight, connections and commitments. The relata of a material relation are mediated by individuals that are called relators. Relators («Relator») are individuals with the power of connecting entities; a flight connection, for example, founds a relator that connects airports, an enrollment is a relator that connects a student with an educational institution. Relators play an important role in answering questions of the sort: what does it mean to say that John is married to Mary? Why is it true to say that Bill works for Company X but not for Company Y?.

Material relations are derived (via «Derivation») from relators and the mediation relations that connect them to the corresponding relata. Cardinality constraints of mediation relations collapse by derivation. Material relations are always affected by collapsed cardinality). Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations.

Examples

EX1:

[image: Example marriage]

EX2:

[image: Example supervizor]

For more examples see «Relator», «Derivation», «Mediation», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

We define a relation of «Mediation» between a «Relator» and the entities it connects. Mediation is a type of existential dependence relation (a form of nonfunctional inherence). It can be derived from the relation between the relata and the qua individiuals that compose the relator and that inhere in the relata. A «Relator» must mediate at least two distinct individuals.

Examples

EX1:

[image: Mediation example]

For more examples see «Relator», «Material», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

Definition

«Structuration» relation allows structuring «Quality».

Examples

For examples see «Quality».

Source:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Economics, 2011.

Common questions

Ask us some question if something is not clear …

 _images/ontouml_mode-forbidden-3.png
Cagory | X

A
Cagory | X

AracEzatoy

«Moden
Mental State

‘Agent S’,

AracEzatoy

«hoden
Mental State

_images/ontouml_pattern-relator-example-2.png
«Kind»

Person
«Roler «Material» «Role»
Pationt | reatfd by - | Postor
|
1 1
|
i
-
«Mediation» «Relator» «Mediation»

1

Treatment

1

_images/ontouml_mode-forbidden-1.png

_images/ontouml_mode-forbidden-2.png
«SubKind» «Rolen «Kind,
suhKn»\(Role \(Kind
«Moden «hoden «hoder

Permission Desire Headache

_images/ontouml_pattern-relator-example.png
«Kind» «Kind»
Person Animal
«Rolen «Materialy «Role»

Pet Owner H Pet

1 1 1
R ension E
I
1
!
<
«Mediation» «Relaton «Mediation»

Ownership

_images/phasePartitionExample.png
«Kind»
Person

N

{disjoint, complete}

«Phase»
single

«Phase»
Married

«Phase»
Divorced

«Phase»
Widow

_images/ontouml_pattern-relator-structure.png
«Kind» «Kind»
General 1 General 2
«Role» «Materialy «Rolen
Specific 1 T Specific 2
1 L 1
«Deriation»
1 1
1
+
«Mediation» «Relator» «Mediation»
| Retator |7

_images/refactor.png
Assoc -target
Source Target

1.a 1.b

newAssoc-1

Target Subtype-1 Target Subtype-2

min1 .. max1

min2 .. max2

newAssoc-2

_images/phasePartitionGeneric.png
«IdProvider»
Provider

N

{disjoint, complete}

«Phase»
Phasel

«Phase»
Phase2

«Phase»
Phase3

«Phase»
Phased

_images/refactor_a1.png
Supertype

- quality :int

{disoint, complete}

«Phase»
IPhase-1

«Phase»
IPhase-2

_images/refactor_a.png
«Collective» «MemberOf» P
Whol art
° partOf a.b

_images/refactor_b1.png
Supertype

A

{disjoint, complete}

«Phase»
Phase-1

«Phase»
Phase-2

«Charactefization»

_images/refactor_b.png
«ComponentOf»

Whole lo——————— Part
partof a.b

new CompOf

«ComponentOf» c.d

_images/refactoring_plan.png
Supertype

«Role»
Role

«Mediation»

«Relator»
Relator-1

«Phase»
Phase

_images/refactor_c.png
Whole Part

new CompOf-2

«ComponentOf»

new CompOf-1
«ComponentOf»

_images/partWholeRelations.png
_\\

«kindy & (essential «kindy . «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter | 1 1 Director Person
name: String name: String
4 4 «kindy [«roler,
1 Site 1 Assistant
«collectver | o «collectiven «roler,
1'|_TeachingStaff | SublectDept [2.5 Teacher
{essential) T — "
«quantity» «quantity» «containmenty «kindy
TeachingTime | 1 WorkingTime | 1 1| _PersonalTimeTable [1
o
«kind»
TeachingSkill
description
prer— vty _ccomnmerts | vty |5 g
T|_iovertory [27 | investment |1 1 Cost Q | 1 |_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp
«quantity»
1 |_Depreciation
amount: Currency

_images/parkinglot_example.png
<Roer
clediaions Used Price Table
T
ki
<Cotectver price Tale
Parking Lot
- pr— T canmte douie
- taNaltate Date
. © montwyRate daute
3
ki <Subkind tteme !
ment | <Fomais_|income Generator
Pay i Roler cinds appicane o
T T Parking Spot Parking Spot v
Provder ™ <Forpals
<Fomis
' '
T
<Subkind g Spot Ty
- aections parking Spot Type
Reservation
<Reator <Roes
{asiont conpete) | parking Spot Usage Used Paring Spot T
“Subknds
iy eniyTime st
Reservation
- T
(aiont compete) | vedaions Medon»
i
1
<Phases <prasen <Subkind <Forpais
Active Parking (Terminated Paring Spot <Roes Specic Spot
pretivecs usage Parked Veticle vsage
" euttme DateTime " lcerse pate stng
1 .
«Kind» g
Veticie Veticle Type
g “Fomalr T
ﬁﬁmm compiete)
<subknd <subknd <subkinds
Wotoreycle Lighusuy Bus/Truck

_images/ontouml_mode-application-1.png
«Kind»

Agent B «Kind»
T Road
«Charactprization»
«Charactprization» 1
«hoden «hoden
Abiity |~ Intention «Charactprization

I

«hoden

«Kind» «Moden Hole

Person [~ Characierzatory | Disease

_images/ontouml_mode-examples.png
«hoden
Intention

«hoden
Hole

«hoden
Disease

«hoden
Abilty

_images/ontouml_mixin-examples.png
ahMixiny.
Luxury Good

ahMixiny
Seatable

ahMixiny
Insurabie Item

ahMixiny.
Performer Artist

_images/ontouml_mixin-forbidden-1.png
i | [ecammon | [e | [wrom | [wsmne | [ommen | [commer
FRIE NN N
FOK! TOKI_ 7 7 7 7 7
i | [| [| [omen | [em | [omen | [
v || e || e || e || | |

_images/ontouml_subkind-application-1.png
«Kind «Relatory «Quantityr | [«Collectiver

Person Marriage Wine Animal Group
«SubKind» «SubKind» «SubKind» «SubKind»
Man Brazillian Marriage | | Red Wine Wolf Pack

_images/ontouml_rolemixin-forbidden-1.png
«RoleMixin»

«RoleMixin»

«RoleMixin»

«RoleMixin»

Analyzed Clay Legal Agreement Insured Item Cancelled Purchased
T - A\ / [r a\ / © T A\ / T A\
«Quantity» «Categor)?(«Mixin» 32< « Relator%
Clay N Agreemerit N Insurable It N Purchas¢ |

_images/ontouml_subkind-examples.png
«SubKind»
Man

«SubKind»
Brazilian Marriage

«SubKind»
Red Wine

«SubKind»
Wolf Pack

_images/ontouml_subkind-application-2.png
«SubKind»

«SubKind»

HalianWine | | French Wine

«Kind»
Car

«Kind» l—'—‘
o
o S| [
i e o | | “Renan
S| [
o™ || o e B
Smea| [emen | [| [
Reawwe | | iodeion | [rovana| | P

_images/ontouml_subkind-forbidden-3.png
«SubKindy «SubKindy «SubKindy

Living Thir Chair Man

«Category» aMixiny «RoleMixiny
‘Animal Seatable Customer

_images/ontouml_subkind-forbidden-2.png
«Role» «Phaser «RaleMixiny

sammx oid CMX ome

«SubKind» «SubKind» «SubKind»
Man suv Woman

_images/optionalPart.png
<kind <kind
&
Tractor 5 K] Semitrailer

_images/ontouml_types-examples.png
«Kind»
Person

«Rolen
Football Player

«Kind»
Company

Kind»
city

«Kind»
Operating System

_images/ontouml_rolemixin-application-3.png
«Kind»
Hard Drive

«RoleMixin»
Computer Part

«Kind»
CPU

I —T 1

Hard Drive in Use

«Role»

«Role»
CPU inUse

_images/ontouml_rolemixin-application-2.png
«Category»
Agent

<]7

«RoleMixin»
Customer

BEEE

«Kind»
Person

«Kind»
Company

_images/ontouml_rolemixin-examples.png
«RoleMixin»
Customer

«RoleMixin»
Provider

«RoleMixin»
Purchased

«RoleMixin»
Resource

_static/minus.png

_static/file.png

_static/plus.png

_static/ontouml.png

_images/refactoring_plan_b.png
+di

edRole «Material»

«Role»
DefinedRole

definingMediation

«Mediation»

D

«Relator»
DefiningRelator

«Role»
FreeRole-1

{redefines definedRole}

_ «Mediation»

«Material»

MediatedType

_images/refactoring_plan_2.png
«Relator»
Relator

Mediation

RigidType-n

«Mediation»

«Role»
Role

_images/sharedPart.png
«king»
Club

«kind»
Person

_images/refactoring_plan_b1.png
«Relator»
Relator-1

Mediated by
«Mediation» Relator-1

Mediated by «Relator

Relator-2 «Mediation» Relator-2

_images/subQuantity.png
_\\

«kind» @ _lessential «kind» . «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter | 1 1 Director Person
name: String name: String
4 4 «kindy [«roler,
1 Site 1 Assistant
«ollectiver | o coolectver |+ «roler,
1'|_TeachingStaff SubjectDept 2.5 Teacher
{essential) "
“quantity, «quantitys «containmenty «kindy
TeachingTime | 1 WorkingTime |1 1| _PersonalTimeTable [1
o
«kind»
TeachingSkill
Teecalpion
{essential)
«collectiver «kind» «containmentyf” «quantitys | gy «quantity»

T inventory [27| investment | 1 Cost Q | 1 |_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp

«quantity»
1 |_Depreciation
amount: Gusreficy

_images/subCollectionOf.png
_\\

«kind» @ _lessential «kind» . «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter | 1 1 Director Person
name: String name: String
4 4 «kindy [«roler,
1 Site 1 Assistant

«ollectiver | o «collectiven «roler
1'|__TeachingStaff SubjectDept 2.7 Teacher

«quantitys (5T quantiys «containmenty «kindy I
TeachingTime | 1 WorkingTime | 1 1| PersonaiTimeTable | 1
N
«kind»
TeachingSkill
description
prer— vty _ccomnmerts | vty |5 g
T|_iovertory [27 | investment |1 1 Cost Q | 1 |_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp
«quantity»
1 |_Depreciation

amount: Currency

_images/subquantity3.png
«kind»
Account

. . [<auantity» «quartity>
containment; Salary @ T Fixedsalary
{essential} —————

«quantity»

VarSalary

_images/subquantity2.png
«kind»
Barrel

«containment»

“«quantity»
Beer

T T

’(1) {essenti

«quantity»
Alcohol

_images/supervizor.png
«mediation»

«relator»

«mediation»

1.*

«role»
GraduateStudent

Assig*ment

«malerial»
1

«mediation»

«relatorn»

-

1.* 1
«role» «rolex»
Supervisor GraduateStudent

«mediation»

* Assig*menl

|

|

|

11
«malerial»

1

1

/supervised-by
1

_fsu pervised-by

«kind»
Supervisor

_images/refactoring_plan_1.png
«Relator»
Relator

Mediation

«Mediation»

_images/examples6.png
Whole

«ComponentOf

partOf a.b

Part

_images/examples7.png
Assoc target

Source Target

X.y w.z A

Source Subtype-1 Source Subtype-2 Target Subtype-1 Target Subtype-2

_images/examples4.png
«Kind»
RigidSupertype

A

GenSet, GenSet
«SubKind» «Role»
Rigid-1 AntiRigid-1

*Note: stereotypes are only illustrative

_images/examples5.png
GenSet

«Kind»
RigidSupertype

GenSet

«SubKind»
Rigid-1

«Role»
AntiRigid-1

*Note: stereotypes are only illustrative

_images/exclusivePart.png
«king» «kind»

Engine Chassis
«kindy
Tractor e
0.1 1
«kindy «kind»

Semitrailer Cab

_images/immutablePart.png
«kind»
Person

i

«rolen
Boxer

«kind»
{immutable part}
@t (MHEDE PATE, |
T T2 Hand

_images/examples8.png
Non Sortal

B

Sortal-1 Sortal-2

v

Identity Provider

_images/examples9.png
«Mixin»
Mixin

Subtype-1

Subtype-2

Subtype-3

_images/immutable_whole.png
«kind»

Brain
AN
{disjoint,complete} ; .
«phase» «phase» {
NonFunctioningBrain | | FunctioningBrain «kind»Person
{essential,

immutable whole}

_images/ontouml_quality-examples.png
«PerceivableQuality
Height

«NonPerceivableQuality
Color

«NonPerceivableQuality
Value

«NonPerceivableQuality
Position

«NominalQuality»
SSN

«NominalQuality»
Codice Fiscale

_images/mandatoryPart.png
«kind»
Tractor

«kind»
Cab

_images/ontouml_quality-forbidden-2.png
«Kind»
Kind

«SubKind»
SubKi

«Relatory
Relator

«NonPerceivableQuality
Value

«NominalQuality»
SSN

«PerceivableQuality
Color

_images/ontouml_quality-forbidden-1.png
«Kind»
Person

avacnenzmn»1

«PerceivableQuality
Height

«Kind»
Person

X

@vavzdev\zahonn1

«PerceivableQuality
Height

_images/ontouml_quantity-application-1.png
«Phaser «Phaser
‘Young Wine Old Wine

_'_1

«Quantity
Wine

«SubKind» «SubKind»
Red Wine White Wine

_images/ontouml_quality-forbidden-3.png
«NonPerceivableQuality
Popuarity Score

«NominalQuality»
1SBN

«PerceivableQuality
GPS Coordinate

«Quantty}
Quantity

«RoleMid]
RoleMixin

_images/ontouml_phase-forbidden-3.png
«Categoryy |, [«Rolemixiny
Living Thi Custome)
«Phaser «Phaser
child child

_images/ontouml_phase-forbidden-2.png
«Kind»
Person

«Phese><

Healthy

_images/ontouml_quality-application-1.png
«NominalQuality»
Product Code

«Kind»

«NonPerceivableQuality
Value

CCharacenzaton
“ L

Product

“Charactenzation,
1]

«PerceivableQuality
Weight

CCharacenzZatony
T L

“Charactenzation,
1 (]

«PerceivableQuality
Color

_images/ontouml_phase-forbidden-4.png
«Phaser
Phase

«Categoryg | [«Rolemixigy ahixiny,
Gategory { | Category Y] wixin]

_images/ontouml_quality-application-4.png
«Kindy
Person

“Stucaton;

CCharacterzZatony
q ki

«PerceivableQuality
Height

«IntegerRationalDimension»
MeterScale

«IntegerRationalDimension»

“Stucuraton,

CentimeterEscale

_images/ontouml_quality-application-2.png
«Kind»
Product

«PerceivableQuality

Characterizaton,
1 1

Weight

eSTucraton

«DecimalRationalDimension
Grams

Stuctraton,

«DecimalRationalDimension
Kilos

_images/4197292_orig.png
.
[r—— Location
Coordinates
prp— -
e
* e it
A ~ longude int
Socal Aaert
Fr ; .
«Category» UFO-C::Normatized {disjoint}
\uFo-c:indivicusi PRt
Social Agent
Iy Categors
GeographicalPoint
o asooaton
(recenes
SpatalLocaton)
“Categon» «Category» «Category»
Authorky | +auborty g conroled by Aursdition Geopraphical
= “Nateran . Regon [e
{redefines
A spatalLceaton)
(@t conplete)
Category» pr— Categorys
1.+ | policalBody < conroleaty o oy,
rame g | 1 atratr Region
(recenes
. authority}
T
{disjoint}
aateran
Subordnateato
<Gategory» Catgor» [r—
Macro Pl | | Wico Pottcal et
Regon Region [0 Foman 1
—ame sung

_images/4440405_orig.png
+republcation

Roer
Tender in External
Phase

Roler

1

1

subsets pubishe)

b
(subsets publcation)

= mocifes “republcaton
1 “Hedatons
{subsetsrepubiation)
+modifedoniest | 1
“pbished pubishes *publcation +publcation ~content
T Wedaton T edmion 1
fes oo
+calForTender | published Cal for [*CalForTendsr pubishes _ +pubication “publcaton tencer
Tender Mecaton edators 1

Tender

_images/3077875_orig.png
«Formal»

< defines
[E— +description 0.1 _
«Formab __recognized < recognizes
«Mixinn 47 Irecognizes B 1 «Categorys 1 «Formal
Social Entity Normative ol
«Formal» P
Gemnes = o 7 o1 defines &
+description
defined
(disjoint}
1
. {redefines
1 +social entity normative —
akind> oocrpion o ahowr
«Role» «Category» Internal Regiment aices & Business Social
Organizational Member Organization T e
e .
{radsfines 1. fredefines 1.
desoription {redefines role
Tecognized) description defined)
defined)
1.
{redefines
. «Kind» social entity} «Formal»
sjon izati i
Organizational Unit Ppe—ry
1
{redefines social
entiy o
“<Kind» v} Formal»
Formal defines &
Organization [defines >
' Formab

_images/3610560_orig.png
«Collective»
Alelle

AN

«Role» «Collective»
AllelicReference RefSeq
Wemferof ®
|
I
1 + 1
«Relator»
«Medigtion» Record «Medidtions
1
o
{disjoint, complete}
«Phase» «Phase» «Phase»
Validated Inferred Provisional
«Phase» «Phase» «Phase»
Predicted Reviewed Model

_images/4465199_orig.png

_images/matder.png
«kind»Person

2\

«mediation»

«relator»

«mediation»

Treatment
* 1.*
11
1 I 1
«
treated i -
«role» | «kind»
Patient Medical Unit
* w«m 1al »

_images/mediation.png
«mediation»q_*

«kind»Person

«relator»
Enroliment

«mediation»

1.* 1

«kind»Educational Institution

_images/marble-chips.jpg

_images/marriage.png
«kind»Person

JAN

«subkind»
Man

JAN

«mediation» 1 _*

«relator»

«role»
Husband

Marriage

«subkind»
Woman

JAN

«mediation»

|1

|

I
/marr?ed %o

*

«kind»

1.7

*

« material >
|

|
/husband :of

*

Wife

« material »»

*

_images/158347_orig.png
bLiy. 1
Exi Il m
R T _ i
N WLL | !
‘WWTT i o‘mprw_lmm MW
i il
ST T ,ﬁ
.]
A mm
e
. | Hi
!
bt

_images/ontouml_antirigid-exampels.png
«Phaser
Elder

Roler
Employee

«RoleMixiny
Customer

«Phaser
Living Person

«Rolen
Student

_images/1640366_orig.png
«Relator» «Relator»
Organizational <]— Membership With
Membership Term
{disjoint,complete}
«Relator» «Relator» «Relator»
Membership by Membership by Effective
Appointment Election Membership
1.* 0.*
realizes participates

«Matgriab» «Matgfrial»
1 2.*
«Mixin» «Mixin»
Nominator Elector

Roler Roler
Individual (Casach Individual Elector
Nominator Social Agent

«Kind»

Natural Person

_images/ontouml_category-application-1.png
«Category
‘Agent

!—‘—\

«Category» «Category»
Individual Agent | | Collective Agent

«Kind»
Person

_images/memberOf.png
_\\

«kindy & (essential «kindy . «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter | 1 1 Director Person
name: String name: String
4 «kindy [«roler,
1 Site 1 Assistant
«collectver | o “ccollectiven «roler
1'|_TeachingStaff SublectDept [P 2.5 Teacher
{essential) T —] 4“/
«quantity» «quantity» «containmenty «kindy
TeachingTime | 1 WorkingTime | 1 1| _PersonalTimeTable [1
o
«kind»
TeachingSkill
description
oo i _ccomanmerts | ity |55 g
inventory [N 27| investment 1 Cost Q | 1 |_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamg
«quantity»
1 |_Depreciation
amount: Currency

_images/nonseparablePart.png
«kind»
Man

{essential,
| @ Tseparaber 1|

«kin»
Brain

_images/ontouml_category-examples.png
«Category»
Living Thing

«Category
‘Agent

«Category»
Object

«Category
Device

«Category
Appliance

_images/ontouml_phase-application-3.png
«Kind»
Person

!—‘—\

«Phaser
Healthy

«Phaser
sick

Charactenzaton;
1 ki

«hoden
Disease

_images/ontouml_phase-application-1.png
«Phase» «Phasen

Fat Thin
[I
«Phase» «Phase»
Living Broken
«Kind» g |

«Phase» Person «Phase»

Deceased Intact
age ade age

«Phase» «Phase» «Phase»
Child Adult Elder

_images/ontouml_phase-forbidden-1.png
«Phasen «Phase» «Phasen «Phaser
Adult Boy Full meX Legal Marri
«Kind» «subKindy | [«Collectiver | [«Relator
Person Man Fleet Marriage

_images/ontouml_phase-examples.png
«Phase»
Healthy

«Phase»
Adult

«Phase»
Living

«Phase»
Broken

«Phase»
Fat

_images/mandatoryWhole.png
«kind»
Man

«kin»
Heart

_images/ontouml_collective-forbidden-2.png
«SubKi «Role «Phas
SubKi Role pnasex

g0 [RT 1%

«Collectiver | [«Collectiven «Collectiver
Committee Deck Pack

_images/ontouml_collective-forbidden-3.png
«Collectiver «Collectiver «Collectiver
Club Association of Clubs | | Family
«Category», ahixiny. «RoleMixi
Category Mixin RoleMix

_images/ontouml_collective-examples.png
«Collectiver
Band

«Collectiver
Family

«Collectiver
Committee

«Collectiver
Deck

«Collectiver
Forest

_images/ontouml_collective-forbidden-1.png
Kindr, <Quanityy | [«Coliectiver | [Retator Hloder
Kind Quantity’ Collectivs Relator mmx

A A A LA

«Collectiver | [«Collectiven | [«Callectiver | [«Collectiven | [«Collectiven
Band Fleet Group Forest Wolf Pack

_images/ontouml_generalization.png
«Kind» «Kind» «Kind»
Person Person Person
«Roler «Phasen «Rolen
Doctor Adult Student

_images/ontouml_identity-provider.png
«Kind»
Person

«Collectiver
Fleet

«Quantity
Sand

«Relatory
Marriage

«hoden
Intention

_images/ontouml_collective-forbidden-4.png
«Phase «RoleMixipy «Role,
Phase RoleMixi Role
«Collectiver | [«Callectiver «Collectiver
oil Group of Visitors | | Research Group

_images/ontouml_formal-examples.png
«Forf
heavi

lighter

ab «Kind» «Category»
r-hen Person Place
weight :Integer{1] A -
. «Formab

«Category»

co-located-with

| «Characierization»

Product

a
«Formal»
more-valuable-hen

| «Charadterizaton

«NonPerceivableQuality»

Value

1

«Styctjration»

«PerceivableQuality»
GPS Coordinate

latitude : foaf1]
longitude : float{1]
altitude : foa1]

«DecimallntervalDimension»

Euro

_images/ontouml_role-application-1.png
«Kind» «Kind»
Person Animal

«Rolen «Rolen «Role»

Student Patient Pet

_images/ontouml_role-examples.png
«Rolen
Student

«Roler
Married

«Roler
Band Member

«Roler
Pet

«Rolen
Patient

«Roler
Traveller

_images/ontouml_role-application-2.png
«Kind»
Person

«Rolen
Patient

Mediatony

«Kind»
Animal

«Relaton «Role»

Treatment Pet

“Mediation»

«Relaton,
Ownership

_images/ontouml_role-forbidden-2.png
«Role» «Role»
Cuslome>< Pet : {
«Kind» «SubKind»

Person Dog

_images/ontouml_role-forbidden-1.png
«Kind»

Person

«Roler «Relator»

Patient Mediation» Treatment
4

_images/ontouml_rolemixin-application-1.png
«Kind»
Person

«RoleMixin»
Customer

T

«Kind»
Company

«Role»

Individual Customer

«Role»

Corporate Customer

_images/ontouml_role-forbidden-3.png
«Rolen «Role» «Role»
Authorized A Corporate Custolyg, Insured ftes
«Category» «RoleMixin» «Mixin»

Agent Customer Insurable ftem

_images/ontouml_relator-forbidden-4.png
«Phasey | [«Rolemixny «Roler
Phase’ RoleMixi Role

«Relatory «Relatory «Relatory
Offering Mandate Nomination

_images/ontouml_relator-forbidden-3.png
«SubKind» «Roler «Phasey
sunK.Mx Role X Pnasex
«Relatory «Relatory «Relatory

Assignment Enrollment Admission

_images/ontouml_rigid-examples.png
«Kind»
Person

«Collectiver
Band

«SubKind»
Man

«Quantity
Wine

«Category»
Object

«Relatory
Marriage

_images/ontouml_relator-forbidden-5.png
«Relator «Relator «Relator

Subscription | | Employment Warriage
«Category, iiny, «RoleMixiny
Category’ Mixin

RureMmrX

_images/ontouml_category-forbidden-1.png
wind> |, [subiinag |, [<Refaon,
Car X m..y\ MWWX

«Categorys | [«Category» | [«Category»
Object ‘Agent Agreement

_images/ontouml_category-forbidden-3.png
«Roler «RoleMixiny «Phaser
Role RoleMixi Phase
«Category

Category

_images/ontouml_kind_example_o2.png
«Kind»
Person

«Role»
Requester

«Role»
Configuration
Manager

«Role»
Developer

A

«Role»
Verifyer

«Role»
Evaluator

«Kind» «Kind» «Kind»
Diagram Document Source Code
«Kind» «Category»
Software Tool Artifact

v

«Category»
item

_images/ontouml_kind_example_o3.png
Role»

Formal Organization
Member <Category»
4 Organization
«Role» 1_headof B
(Organization «Formal» {disjoint}
nar | locatedat

Location [T eFomah 0.

disointcomplte}
Roles headof w | cSubkinds <Role» peadof | <StbKnds
Wissionary Wissionary Functonal |2 2CE - Funcional
Headauarters | “Fo™* 1| organization Headquarters Drleatmn
(disoint complete) o (st complete}
«subkinds «SubKind»
Composed Missionary Standalone Functional
Organization Organization
(st complete) (ot complete)
«SubKinds <SubKind <Subkind eSubkind 04 a- s
Simple Standalone ‘Complex Standalone Simple Standalone Functional | | Complex Standalone Functional -
Missionary Organization | | Missionary Organization Organization organization ComponentOf | Organizational Unit

2r
0.1

<ComponentOfs

_images/ontouml_kind-forbidden-2.png
«SubKindy «Role
Man Customs
«Kind» «Kind» «Kind
Person Person Company

_images/ontouml_kind_example_o1.png
«Kind» «Category»
Project - producedin Artifact

«Kind»
conflicfsWith Requirement RsOn

«SubKind» «SubKind» «SubKind»
FunctionalRequirement NonFunctionalRequirement BusinessRule

_images/ontouml_mixin-application-2.png
ahMixiny.

Performer Artist
«Kind»

Person T

«Roley «Kind»

Individual Artist Band

_images/ontouml_mixed-identity.png
«Category
‘Agent

aMixiny
Insurable

«RoleMixiny
Customer

_images/ontouml_mixin-application-1.png
ahMixiny «Kind»
Luxury Good Car
«Category «Phase» «Phase»
Jewellery Luxury Car Regular Car
«Kind» «Kind» «Kind»
Necklace Ring Earing

_images/ontouml_relator-application-11.png
«Phaser «Phaser
Active Suspended

_'_1

«Relatory
Enrollment

!—‘—\

«SubKind» «SubKind»
Undergraduate Enrollment | | Graduate Enroliment

_images/ontouml_relator-application-1.png
«Phaser «Phaser
Active Suspended

_'_1

«Relatory
Enrollment

!—‘—\

«SubKind» «SubKind»
Undergraduate Enrollment | | Graduate Enroliment

_images/ontouml_relator-examples.png
«Relatory
Marriage

«Relatory
Investigation

«Relatory
Enrollment

«Relatory
Employment

«Relatory
Subscription

_images/ontouml_relator-application-2.png
«Kind» Min: 2 «Kind»
Min: 2 Person OK! Person
OoK! k)
<Relaion» Roler Kinas <Retators Role
Marriage | —TEdaTam | Spouse School /EaaTGT | Enrolment [{VEAETom—| Student
= 1 O] Shias G . & (Ol
<Relaton» <Kinas Kinas
Emplomen|~ eS| Company Person
Lo |
Min: 2
<Roler
OK! o SRoier Roler
Investigator Suspect
<Suoking Roler ©) i
Temporary Emplomert [THETRIGT | Temporary Empess [®) Min: 3
attegtatons
1.5 OK!
<Relaion»
Wedatons

“Wedagy; | Investigation

B

_images/ontouml_relator-forbidden-2.png
«Kind» «Quantityr | [«Collectiver | [«Relaton «hoden
Kind X Quamnx Collecan Relﬂlon Mode X

«Relatory «Relatory «Relatory «Relatory «Relatory

internship | | Agreement | |Membership | | Warranty Ownership

_images/ontouml_relator-forbidden-1.png
«Relatory
Enrolime:

«Category»
Social Agreement

«Relatory
Marriage

et
1.0 1

OKI!

Relator Role»

Envoliment |~ cidiatons, | _Student
OKI!

Roler

Personin Agreement

_images/ontouml_quantity-forbidden-1.png
«Kind» «uantityr | [«Collectiver | [«Relatons «hoden
Kind X nuammx Collecan Relﬂlon Mode X

«Quantityr | [«auantis | [«Quanttys | [«Quantiys | [«auantiy
Clay Water Sand Wine Flour

_images/ontouml_quantity-examples.png
«Quantty»
Sand

«Quantty»
Potroleum

«Quantity»
Wine

«Quantty»
Marble

«Quantty»
Aluminum

_images/ontouml_quantity-forbidden-3.png
«Phaser_ | [«Rolehixiny «Roler
Phase X RoleMixif Role
«Quanttyr | [«Quantitys | [«Quanity»

oil Diesel Wood

_images/ontouml_quantity-forbidden-2.png
«SubKind» «Roler «Phaser

SuhKlmX Rol% Phase X

«Quantity» «Quantty» «Quantity»
Sugar Whisky Air

_images/ontouml_quantity-forbidden-4.png
«Quantity «Quantity «Quantity»
Marble Granite Lava

«Categoryy, ahixiny. «RoleMixiny
Category Mixin RoleMixi

_images/ontouml_kind-examples.png
«Kind»
Human Body

«Kind»
Forest

«Kind
Computer

«Kind»
Key

«Kind»
Car

«Kind»
Organization

_images/ontouml_kind-forbidden-1.png
«Kind»

Thing
ind Cateqoryr

Living Bevx Living Being
ind> ind>
Person Person

_images/ontouml_inherited-identity.png
«Roler
Musician

«Phaser
Broken

«SubKind»
Bulldog

_images/4611138_orig.png
«Relator»
Functional
-4 requires L Responsibility

«Formal»

«hou»
Business Social

«Formal»

_images/5083146_orig.png
nar
Organization
<Quattys Prsser
nsctiveprofessor
Fieid -
& e
e <snts s o Frsan
[Water Education | _<componeriot Center <ComponertOts
nstuion (@ > pepariment Deparimenichie| o>
professor e
1
P
B = soundTo
naciveCuriculum
-
. <R
\ e s manages caursecoardintor
cormcutam organzes »- couse [7 T
eaaion
praser T
ctecumcuum T =
o.r
<roer
st
= 7 7| cokonse
Reitor
i Evotment
i
o.
s
ety <o -~ atesions
v T s [\
reon
Studentiandte
esaton

‘Suspendedstudent Egresstudent Reguiarstudent

_images/4586621_orig.png
«Category»
Agent
«RoleMirin»
Target Customer
«Eventr «Category»
Service Offer Service Offering
Description
1.
o «MemilerOfs
«RoleMisin» 1 g 1.0
Service Provider
«Formaly Mediption»
creates
v "“""“ «Collective»
Target Customer Community
R 1 4 p
«Relator»
Mediation» Service Offering] T P
provides B 1.+ «Mediation»
offered to -
1 1
A «CompofentOfs
inhgres in 1 «CompofientOf»
«Chafracterization» o
Mode»
Servie Offering extemally dependent on ko
7| Commitment «Formal» §
i 4 «Charactgrization
«Fqmaly
N eModie»
‘extemally dgpendent on Service Offering
r Claim -

_images/4586621_orig1.png
«Category»
Agent
«RoleMirin»
Target Customer
«Eventr «Category»
Service Offer Service Offering
Description
1.
o «MemilerOfs
«RoleMisin» 1 g 1.0
Service Provider
«Formaly Mediption»
creates
v "“""“ «Collective»
Target Customer Community
R 1 4 p
«Relator»
Mediation» Service Offering] T P
provides B 1.+ «Mediation»
offered to -
1 1
A «CompofentOfs
inhgres in 1 «CompofientOf»
«Chafracterization» o
Mode»
Servie Offering extemally dependent on ko
7| Commitment «Formal» §
i 4 «Charactgrization
«Fqmaly
N eModie»
‘extemally dgpendent on Service Offering
r Claim -

_images/6216663_orig.png
«Category»
ttem
<Relaors
ConfigurationSelection
= a— 1 cMedatons
-
1
<RoleMiiny
|Configurationtem Person
<Role»
i 2 ConfigurationManager
«Componentofs
e
0.1
(] aveions
<RoleMains
<RoleMiny
<Characufizations ‘Momicc P L.
<Relaors
Markup
1 1
odes
Version n
e T
«Charactergation» 2 «Chpracterization»
«Componentgts
0.1
. 6
trodes <toder
Atomicersion Configuration
Roer elediatons

_images/6461429_orig.png
«Category»
Physical Agent

«Kind»
Natural Person
+membership

«Roler < formalizes «Relators membership to B
Organizational Organizational
Member 1.7 Membership

+organization

«Category»
Organization

1 «Mediation» 0..* «Mediation» 1

+organizational member +membership

{disjoint,complete}

«Relator»
Assignment

«Relator»
Admi

_images/583962_orig.png
o

e U 2ot
sl Ao Gy

e o
iy ember RepiarCrgy e
e e winewat
B Frotssn
Ey
[
ooty | ocon P
o]
o
onefasty | ordmsterat
T :ﬁ

_images/583962_orig1.png
o

e U 2ot
sl Ao Gy

e o
iy ember RepiarCrgy e
e e winewat
B Frotssn
Ey
[
ooty | ocon P
o]
o
onefasty | ordmsterat
T :ﬁ

_images/7458727_orig.png
«Kind»
Normative Act

duration :Date
hierarchy int
number int
publication date :Date

{disjoint, complete}
«Subkind» «SubkKind> «Subkind» «Subkind» «SubkKind> «Subkind»
Constitution Complementary Delegated Law Ordinary Law Provisional
Amendment Law Measure
«SubKind» «SubKind» «SubKind» «SubKind» «SubKind»
Legislative Decree Decree Resolution Ordinance Handout
int. complete)
«Subkind» «Subkind» «SubkKind»
Autonomous [Regulatory Decree| Singular Decree
Decree

_images/792282_orig.png
Categorys

Muscle
akinds kind> inds ckind inds akind> kind>
LeftVentricle Rightventicle Heart Rightatrium Leftatrium Peripherals Lungs HumanBody

«Categorys

_images/8075130_orig.png
«Formaly
Tpreceeds

1

«Rolen

AllelicVariant

constituted by B

Mediation»

«Collectiven «Roler
formed by b "
Allele il s Nucleotide g
o
«Roler
§ Materiah AllelicReference
|
I
I
I
1 i (]
I
I «MemberOfy
i
Mediati «Relator» «Mediation» {subdsets nucleotide} «Rolen
«Medaton Deletion *| DeletedNucleotide

nav.xhtml

 Table of Contents

 		
 OntoUML specification

 		
 Introduction

 		
 OntoUML

 		
 UFO

 		
 Theory

 		
 Types and Individuals

 		
 Identity

 		
 Rigidity

 		
 Class stereotypes

 		
 Kind

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Subkind

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Phase

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Role

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Collective

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Quantity

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Relator

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Category

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 PhaseMixin

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 RoleMixin

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Mixin

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Mode

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Quality

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Relationship stereotypes

 		
 Introduction

 		
 Formal

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Material

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Mediation

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Characterization

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Derivation

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Structuration

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 Part-Whole

 		
 Examples

 		
 ComponentOf

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 Containment

 		
 Definition

 		
 Common questions

 		
 Examples

 		
 MemberOf

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 SubCollectionOf

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 SubQuantityOf

 		
 Definition

 		
 Constraints

 		
 Common questions

 		
 Examples

 		
 OntoUML Anti-Patern Catalogue

 		
 BinOver anti-pattern

 		
 DecInt anti-pattern

 		
 DepPhase anti-pattern

 		
 FreeRole anti-pattern

 		
 GSRig anti-pattern

 		
 HetColl anti-pattern

 		
 HomoFunc anti-pattern

 		
 ImpAbs anti-pattern

 		
 MixIden anti-pattern

 		
 MixRig anti-pattern

 		
 MultDep anti-pattern

 		
 PartOver anti-pattern

 		
 RelComp anti-pattern

 		
 RelOver anti-pattern

 		
 RelRig anti-pattern

 		
 RelSpec anti-pattern

 		
 RepRel anti-pattern

 		
 UndefFormal anti-pattern

 		
 UndefPhase anti-pattern

 		
 WholeOver anti-pattern

 		
 OntoUML Pattern Catalogue

 		
 Phase Partition pattern

 		
 Generic pattern

 		
 Examples

 		
 Relator pattern

 		
 Generic pattern

 		
 Examples

 		
 RoleMixin pattern

 		
 Generic pattern

 		
 Examples

 		
 RoleMixin Alternative pattern

 		
 Generic pattern

 		
 Examples

 		
 Contributing

 		
 Reporting issues

 		
 Solving issues

 		
 Documentation guidelines

_images/9904412_orig.png
o
e
craasion
=
<subioas . /d [
ooyt e
oacpine
o
1 Professor
e
cumem o
S oy <tondes
.
e R o
s = — st
= T
'
|
. H T
!
. o s
Ghsstmament
Ktvecss T T
craaaasions
:
e
PR P
Year Somastes Parity.
[

daaTypen
oate

_images/Family_Portrait.jpg

_images/8075130_orig1.png
«MemberOf»
A «Formaly precedes
[tsubsets nucleotide} 1
«Role» «Kind» 1
DeletedNucleotide Nucleotide
—|
1.0 +nucleotide | 2
forméd by
«Memilgrof»
«Collective»
Alelle

I

«Medigtion»)

"y
constitlted by

«Role» «Role»
AllelicVariant AllelicReference

1.0 Materiab 1

«Medigtion» «Medigtion»
«Relator»
Deletion

_images/8432288_orig.png
hour

Colaboraton Busiess Role
sin.compete)
Intermal Cllaboration Roltone
edatons || Reaton | avedatons - P
o e o Susiness Externl .
Busmess foke il 1]._coaboration | * 17| colaborator By S o
{ddsatoonpien) wKindr (disjoint complete) ko
Natural Prson el
A
st of
winke ot
Fofnais cal
o
e o Roer oo
ol e O oo hganeasion Physical Agent Social Agent
oo Estermal el [0
Colaborator Collborstor
o
nstance of =
<Fomalr
s o
Socil Agent Physica Agent
o] memal etemal
Colanorator callaborator
™
< instance of

“Fomals

_images/Tannin_heap.jpeg

_images/VenusDeMiloReconstruction.png
Venus with arms, as they are believed

ngzc;sg:pMFﬁsconstructlon Gl PPN Saber SEUM — to have existed - the right holding up the
\ QK? slipping tunic, the left an apple.

_images/RoleMixinPat1Generic.png
«RoleMixin»

RM
«IdProvider» «IdProvider»
p1 P2
«Role» «Role»

RoleOfP1 RoleOfP2

_images/RoleMixinPat2Generic.png
«IdProvider» «Category» «RoleMixiry
P1 P1P2Mixin RoleofCategory
«IdProvider»

P2

_images/book_ofscm.jpg

_images/componentOf.png
«kind» essential, «kind» «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter 1 Director Person
name: String name: String
4 4 «kindy ? «roler,
1 Site 1 Assistant
«collectiver coolectver |+ «roler,
TeachingStaff SubjectDept 2.5 Teacher

[}

‘I «quantitys (5T quantiys «containmenty «kindy I
TeachingTime | 1 WorkingTime | 1 1| PersonaiTimeTable | 1
N
«kind»
TeachingSkill
description
prer— vty _ccomnmerts | vty |5 g
Inventory 2.7 | investment [1 1 Cost Q | 1 |_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp
«quantity»
1 |_Depreciation

amount: Currency

_images/containment.png
«kind»
Account

«containment»

1 1

«quantity»
Salary

fixedPart
variablePart

_images/dog-phases.jpg

_images/essentialPart.png
«kind»
Tractor

{essential)

®

«kind»
Chassis

_images/containment2.png
_\\

«kind» @ _lessential «kind» . «roler, N
TrainingAgency |1 inseparable} 1 | _Headquarter | 1 1 Director Person
name: String name: String
4 4 «kindy [«roler,
1 Site 1 Assistant
«ollectiver | o coolectver |+ «roler,
1'|_TeachingStaff | SubjectDept 2.5 Teacher
{essential) "
«quantity» «quantity» «containmenty «kind»
TeachingTime | 1 WorkingTime | 1 1| _PersonalTimeTable [) 1
o
«kind»
TeachingSkill
description
«collectiver «kind» «containment» | «quantity» Jessential™ quantity»
1| _inventory *|__investment | 1 1 Cost 1|_ResidualPrice
name: String amount: Currency amount: Currency
date: Timestamp
«quantity»
1 |_Depreciation

amount: Currency

_images/containment3.png
«kind»
Barrel

«containment»

T T

«quantity»
Beer

_images/examples10.png
Med-1
«Mediation»

Med-2
«Mediation»

«Relator»
Relator-2

_images/examples11.png
SuperType

Whole-1 Whole-2
a.b c.d
partof-1 Part partOf2

*Note: the presented structure is illustrative and do not cover all possibilities for PartOver occurrence

_images/examples.png
Variation 1: Source equals Target Variation 4: Overlapping Subtypes

SuperType
binaryRglation
+range c..d
Source / Target A
+domain a..b {overlapping}
GS GS
Source . Target
+domain +range
a.b binaryRelation. g4
Variation 2: Target subsets Source Variation 5: Overlapping Mixins (Common Sortals)
Source
i Source Target
+domain +domain +range 9
a.b a.b binaryRelation. 4

A binaryRelation A A

Target

+range Sortal-1 Sortal-2

*Note: the presented variations are illustrative and do not intend to cover all possibilities

_images/examples1.png
Parent-1

Parent-2

Parent-3

Type

_images/examples13.png
Variation 1 Supertype Veriation 2 Mediation» «Relator «Mediation»
. Med1 Relator Med3
Med-2
! 1 «Mediation»
over-1 over2 over3 over-1 Over3
over2
Mgd-2
Mgd-1 «Mediation» Mgd-3
«Medfation» «Medjation»
«Relator Subtype
Relator

*Note: the presented variations are illustrative and do not intend to cover all possibilities

_images/examples14.png
SuperType

Whole-1 Whole-2
a.b c.d
partof-1 Part partOf2

*Note: the presented structure is illustrative and do not cover all possibilities for PartOver occurrence

_images/examples12.png
Variation 1 Variation 2

Variation 4

+aTarget
X..y

x>0and y>1

ASource (ATarget/ | ,hTarget

+aSource| Brarget / BSource)
+bTarget
+bSource

*Note: the presented variations are illustrative and do not intend to cover all possibilities

+
x>0and y>1 bSource

_images/examples17.png
formal
Target
«Formal»

_images/examples18.png
Supertype

A

{disioint, complete}

Partition Partition
«Phase» «Phase»
Phase-1 Phase-2

_images/examples15.png
Variation 1 Variation 2

A
ASource A ATarget ASource / BSource ATarget
4 B Z> B
BSource BTarget BTarget
. A
Variation 3 Variation 4
B
A
ASource / BSource B ATarget / BTarget |ASource / ATarget
BSource / BTarget
Variation 5 Variation 6
A A
Asource / ATarget ASource ATarget
B
B
BSource BTarget BSource / BTarget

*Note: the presented variations are illustrative and do not intend to cover all possibilities

_images/examples16.png
«Kinds

Person
«Roler 1 1. | «Relators bl eMediations _product
Customer customer sMediations _bill | Bil . 1

“inds
Product

_images/examples3.png
«Role»
DefinedRole

definingMediation

B

«Role»
FreeRole-1

«Mediation»

«Relator»
DefiningRelator

_images/examples19.png
Variation 1 Variation 2
SUPXVPE Subtype
v b+d>2 v
Part-1 Part-2 Part-1 Part-2
a.b b+d>2 c.d a.b c.d

e >
parof-1 Whole partof-2 partOf-1 Whole partOf-2

*Note: the presented variations are illustrative and do not intend to cover all possibilities

_images/examples2.png
«Phase»
Phase

Med-1

«Mediation»

«Relator»
Relator-1

